高中數(shù)學說課稿[精選]
作為一名教師,可能需要進行說課稿編寫工作,借助說課稿可以更好地提高教師理論素養(yǎng)和駕馭教材的能力。那么寫說課稿需要注意哪些問題呢?下面是小編幫大家整理的高中數(shù)學說課稿,僅供參考,歡迎大家閱讀。
高中數(shù)學說課稿1
一、教學目標
(一)知識與技能
1、進一步熟練掌握求動點軌跡方程的基本方法。
2、體會數(shù)學實驗的直觀性、有效性,提高幾何畫板的操作能力。
(二)過程與方法
1、培養(yǎng)學生觀察能力、抽象概括能力及創(chuàng)新能力。
2、體會感性到理性、形象到抽象的思維過程。
3、強化類比、聯(lián)想的方法,領(lǐng)會方程、數(shù)形結(jié)合等思想。
(三)情感態(tài)度價值觀
1、感受動點軌跡的動態(tài)美、和諧美、對稱美
2、樹立競爭意識與合作精神,感受合作交流帶來的成功感,樹立自信心,激發(fā)提出問題和解決問題的勇氣
二、教學重點與難點
教學重點:運用類比、聯(lián)想的方法探究不同條件下的軌跡
教學難點:圖形、文字、符號三種語言之間的過渡
三、、教學方法和手段
【教學方法】觀察發(fā)現(xiàn)、啟發(fā)引導、合作探究相結(jié)合的教學方法。啟發(fā)引導學生積極思考并對學生的思維進行調(diào)控,幫助學生優(yōu)化思維過程,在此基礎(chǔ)上,提供給學生交流的'機會,幫助學生對自己的思維進行組織和澄清,并能清楚地、準確地表達自己的數(shù)學思維。
【教學手段】利用網(wǎng)絡教室,四人一機,多媒體教學手段。通過上述教學手段,一方面:再現(xiàn)知識產(chǎn)生的過程,通過多媒體動態(tài)演示,突破學生在舊知和新知形成過程中的障礙(靜態(tài)到動態(tài));另一方面:節(jié)省了時間,提高了課堂教學的效率,激發(fā)了學生學習的興趣。
【教學模式】重點中學實施素質(zhì)教育的課堂模式“創(chuàng)設情境、激發(fā)情感、主動發(fā)現(xiàn)、主動發(fā)展”。
高中數(shù)學說課稿2
課題:函數(shù)的單調(diào)性
教材:人教版全日制普通高級中學教科書(必修)數(shù)學第一冊(上)
授課教師:北京景山學校許云堯
【教學目標】
1.使學生從形與數(shù)兩方面理解函數(shù)單調(diào)性的概念,初步掌握利用函數(shù)圖象和定義判斷、證明函數(shù)單調(diào)性的方法.
2.通過對函數(shù)單調(diào)性定義的探究,滲透數(shù)形結(jié)合的思想方法,培養(yǎng)學生觀察、歸納、抽象的能力和語言表達能力;通過對函數(shù)單調(diào)性的證明,提高學生的推理論證能力.
3.通過知識的探究過程培養(yǎng)學生細心觀察、認真分析、嚴謹論證的良好思維習慣,讓學生感知從具體到抽象,從特殊到一般,從感性到理性的認知過程.
【教學重點】函數(shù)單調(diào)性的概念、判斷及證明.
【教學難點】根據(jù)定義證明函數(shù)的單調(diào)性.
【教學方法】教師啟發(fā)講授,學生探究學習.
【教學手段】計算機、投影儀.
【教學過程】
一、創(chuàng)設情境,引入課題
為了預測北京奧運會開幕式當天的天氣情況,數(shù)學興趣小組研究了xxxx年到xxxx年每年這一天的天氣情況,下圖是北京市今年8月8日一天24小時內(nèi)氣溫隨時間變化的曲線圖.
引導學生識圖,捕捉信息,啟發(fā)學生思考.
問題:觀察圖形,能得到什么信息?
預案:
(1)當天的最高溫度、最低溫度以及達到的時刻;
(2)在某時刻的溫度;
(3)某些時段溫度升高,某些時段溫度降低.
教師指出:在生活中,我們關(guān)心很多數(shù)據(jù)的變化規(guī)律,了解這些數(shù)據(jù)的變化規(guī)律,對我們的生活是很有幫助的.
問題:還能舉出生活中其他的數(shù)據(jù)變化情況嗎?
預案:水位高低、降雨量、燃油價格、股票價格等.
歸納:用函數(shù)觀點看,其實這些例子反映的'就是隨著自變量的變化,函數(shù)值是變大還是變小.
〖設計意圖〗由生活情境引入新課,激發(fā)興趣.
二、歸納探索,形成概念
對于自變量變化時,函數(shù)值是變大還是變小,是函數(shù)的重要性質(zhì),稱為函數(shù)的單調(diào)性,同學們在初中對函數(shù)的這種性質(zhì)就有了一定的認識,但是沒有嚴格的定義,今天我們的任務首先就是建立函數(shù)單調(diào)性的嚴格定義.
1.借助圖象,直觀感知
問題1:分別作出函數(shù)的圖象,并且觀察自變量變化時,函數(shù)值的變化規(guī)律?
預案:
(1)函數(shù),在整個定義域內(nèi)y隨x的增大而增大;函數(shù),在整個定義域內(nèi)y隨x的增大而減。
(2)函數(shù),在上y隨x的增大而增大,在上y隨x的增大而減。
(3)函數(shù),在上y隨x的增大而減小,在上y隨x的增大而減。
引導學生進行分類描述(增函數(shù)、減函數(shù)),同時明確函數(shù)的單調(diào)性是對定義域內(nèi)某個區(qū)間而言的,是函數(shù)的局部性質(zhì).
問題2:能不能根據(jù)自己的理解說說什么是增函數(shù)、減函數(shù)嗎?
預案:如果函數(shù)在某個區(qū)間上隨自變量x的增大,y也越來越大,我們說函數(shù)在該區(qū)間上為增函數(shù);如果函數(shù)在某個區(qū)間上隨自變量x的增大,y越來越小,我們說函數(shù)在該區(qū)間上為減函數(shù).
教師指出:這種認識是從圖象的角度得到的,是對函數(shù)單調(diào)性的直觀、描述性的認識.
〖設計意圖〗從圖象直觀感知函數(shù)單調(diào)性,完成對函數(shù)單調(diào)性的第一次認識.
2.抽象思維,形成概念
問題1:如圖是函數(shù)的圖象,能說出這個函數(shù)分別在哪個區(qū)間為增函數(shù)和減函數(shù)嗎?
學生的困難是難以確定分界點的確切位置.
通過討論,使學生感受到用函數(shù)圖象判斷函數(shù)單調(diào)性雖然比較直觀,但有時不夠精確,需要結(jié)合解析式進行嚴密化、精確化的研究.
〖設計意圖〗使學生體會到用數(shù)量大小關(guān)系嚴格表述函數(shù)單調(diào)性的必要性.
問題2:如何從解析式的角度說明在上為增函數(shù)?
預案:(1)在給定區(qū)間內(nèi)取兩個數(shù),例如2和3,因為22<32,所以在上為增函數(shù).
(2)仿(1),取多組數(shù)值驗證均滿足,所以在為增函數(shù).
(3)任取,因為,即,所以在上為增函數(shù).
對于學生錯誤的回答,引導學生分別用圖形語言和文字語言進行辨析,使學生認識到問題的根源在于自變量不可能被窮舉,從而引導學生在給定的區(qū)間內(nèi)任意取兩個自變量.
〖設計意圖〗把對單調(diào)性的認識由感性上升到理性認識的高度,完成對概念的第二次認識.事實上也給出了證明單調(diào)性的方法,為第三階段的學習做好鋪墊.
問題3:你能用準確的數(shù)學符號語言表述出增函數(shù)的定義嗎?
師生共同探究,得出增函數(shù)嚴格的定義,然后學生類比得出減函數(shù)的定義.
(1)板書定義
(2)鞏固概念
三、掌握證法,適當延展
例1證明函數(shù)在上是增函數(shù).
1.分析解決問題
針對學生可能出現(xiàn)的問題,組織學生討論、交流.
2.歸納解題步驟
引導學生歸納證明函數(shù)單調(diào)性的步驟:設元、作差、變形、斷號、定論.
練習:證明函數(shù)在上是增函數(shù).
問題:除了用定義外,如果證得對任意的,且有,能斷定函數(shù)在區(qū)間上是增函數(shù)嗎?
引導學生分析這種敘述與定義的等價性.讓學生嘗試用這種等價形式證明函數(shù)在上是增函數(shù).
〖設計意圖〗初步掌握根據(jù)定義證明函數(shù)單調(diào)性的方法和步驟.了解等價形式進一步發(fā)展可以得到導數(shù)法,為今后用導數(shù)方法研究函數(shù)單調(diào)性埋下伏筆.
四、歸納小結(jié),提高認識
學生交流在本節(jié)課學習中的體會、收獲,交流學習過程中的體驗和感受,師生合作共同完成小結(jié).
1.小結(jié)
(1)概念探究過程:直觀到抽象、特殊到一般、感性到理性.
(2)證明方法和步驟:設元、作差、變形、斷號、定論.
(3)數(shù)學思想方法:數(shù)形結(jié)合.
2.作業(yè)
書面作業(yè):課本第60頁習題2.3第4,5,6題.
課后探究:研究函數(shù)的單調(diào)性.
高中數(shù)學說課稿3
一、教材分析:
1、教材的地位與作用。
本節(jié)內(nèi)容是在學生學習了“事件的可能性的基礎(chǔ)上來學習如何預測不確定事件(隨機事件)發(fā)生的可能性的大小!庇酶怕暑A測隨機發(fā)生的可能性大小,在日常生活、自然、科技領(lǐng)域有著廣泛的應用,學習本單元知識,無論是今后繼續(xù)深造(高中學習概率的乘法定理)還是參加社會實踐活動都是十分必要的。概率的概念比較抽象,概率的定義學生較難理解。
在教材的處理上,采取小單元教學,本節(jié)課安排讓學生了解求隨機事件概率的兩種方法,目的是讓學生能夠比較系統(tǒng)地理解概率的意義及求概率的方法,為下面學習求比較復雜的`情況的概率打下基礎(chǔ)。
2、重點與難點。
重點:對概率意義的理解,通過多次重復實驗,用頻率預測概率的方法,以及用列舉法求概率的方法。
難點:對概率意義的理解和用列舉法求概率過程中在各種可能性相同條件下某一事件可能發(fā)生的總數(shù)及總的結(jié)果數(shù)的分析。
二、目的分析:
知識與技能:掌握用頻率預測概率和用列舉法求概率方法。
過程與方法:組織學生自主探究,合作交流,引導學生觀察試驗和統(tǒng)計的結(jié)果,進而進行分析、歸納、總結(jié),了解并感受概率的定義的過程,引導學生從數(shù)學的視角觀察客觀世界,用數(shù)學的思維思考客觀世界,以數(shù)學的語言描述客觀世界。
情感態(tài)度價值觀:學生經(jīng)歷觀察、分析、歸納、確認等數(shù)學活動,感受數(shù)學活動充滿了探索性與創(chuàng)造性,感受量變與質(zhì)變的對立統(tǒng)一規(guī)律,同時為概率的精準、新穎、獨特的思維方法所震撼,激發(fā)學生學習數(shù)學的熱情,增強對數(shù)學價值觀的認識。
三、教法、學法分析:
引導學生自主探究、合作交流、觀察分析、歸納總結(jié),讓學生經(jīng)歷知識(概率定義計算公式)的產(chǎn)生和發(fā)展過程,讓學生在數(shù)學活動中學習數(shù)學、掌握數(shù)學,并能應用數(shù)學解決現(xiàn)實生活中的實際問題,教師是學生學習的組織者、合作者和指導者,精心設計教學情境,有序組織學生活動,讓課堂充滿生機活力,體現(xiàn)“教” 為“學”服務這一宗旨。
四、教學過程分析:
1、引導學生探究
精心設計問題一,學生通過對問題一的探究,一方面復習前面學過的“確定事件和不確定事件”的知識,為學好本節(jié)內(nèi)容理清知識障礙,二是讓學生明確為什么要學習概率(如何預測隨機事件可能性發(fā)生大小)。引導學生對問題二的探究與觀察實驗數(shù)據(jù),使學生了解概率這一重要概念的實際背景,感受并相信隨機事件的發(fā)生中存在著統(tǒng)計規(guī)律性,感受數(shù)學規(guī)律的真實的發(fā)現(xiàn)過程。
2、歸納概括
學生從試驗中得到的統(tǒng)計數(shù)字及概率呈現(xiàn)穩(wěn)定在某一數(shù)值附近這一規(guī)律,讓學生明確概率定義的由來。
引導學生重新對問題一和問題二的探究,分析某事件發(fā)生的各種可能性在全部可能發(fā)生結(jié)果中所占比例,得到用列舉法求概率的公式,引導學生進行理性思維,邏輯分析,既培養(yǎng)學生的分析問題能力,又讓學生明確用列舉法求概率這一簡便快捷方法的合理性。
P(A)= = = (m
3、舉例應用
、乓龑W生對教材書例題、問題一、問題二中問題的進一步分析與探究,讓學生掌握用列舉法求概率的方法。
、埔龑W生對練習中的問題思考與探究,鞏固對概率公式的應用及加深對概率意義的理解。
深化發(fā)展
、旁O置3個小題目,引導學生歸納、分析、總結(jié),加深對知識與方法的理解,并學會靈活運用。
、谱寣W生設計活動內(nèi)容,對知識進行升華和拓展,引導學生創(chuàng)造性地運用知識思考問題和解決問題,從而培養(yǎng)學生的創(chuàng)新意識和創(chuàng)新能力。
高中數(shù)學說課稿4
尊敬的各位專家,評委:
上午好!
根據(jù)新課改的理論標準,我將從教材分析,學情分析,教學目標分析,學法、教法分析,教學過程分析,以及板書設計這六個方面來談談我對教材的理解和教學的設計。
一、教材分析
地位和作用:
《______________________》是北師大版高中數(shù)學必修二的第______章“__________”的第________節(jié)內(nèi)容。
本節(jié)是在學習了________________________________________之后編排的。通過本節(jié)課的學習,既可以對_________________________________的知識進一步鞏固和深化,又可以為后面學習_________________________打下基礎(chǔ),所以_________________是本章的重要內(nèi)容。此外,《________________________》的知識與我們?nèi)粘I、生產(chǎn)、科學研究有著密切的聯(lián)系,因此學習這部分有著廣泛的現(xiàn)實意義。
二、學情分析
1、學生已熟悉掌握______
2、學生的認知規(guī)律,是由整體到局部,具體到抽象發(fā)展的。
3、學生思維活躍,積極性高,已初步形成對數(shù)學問題的合作探究能力
4、學生層次參差不齊,個體差異還比較明顯
三、教學目標分析
根據(jù)《教學大綱》的要求和學生已有的知識基礎(chǔ)和認知能力,確定以下教學目標:
1、知識與技能:
2、過程與方法:通過___學習,體會__的思想,培養(yǎng)學生提出問題,分析問題,解決問題的能力,提高交流表達能力,提高獨立獲取知識的能力。
3、情感態(tài)度與價值觀:培養(yǎng)把握空間圖形的能力,欣賞空間圖形所反應的數(shù)學美(認識數(shù)學內(nèi)容之間的內(nèi)在聯(lián)系,加強數(shù)形結(jié)合的思想,形成正確的數(shù)學觀)。
教學重點:
難點:
四、學法、教法分析
。ㄒ唬⿲W法
首先,通過自學探究,培養(yǎng)學生的分析、歸納能力,提高學生合作學習的能力,學生課堂中體現(xiàn)自我,學會尋找問題的突破口,在探究中學會思考,在合作中學會推進,在觀察中學會比較,進而推進整個教學程序的展開。
其次,教學過程中,我想適時地根據(jù)學生的“最近發(fā)展區(qū)”搭建平臺,充分發(fā)揮“教師的主導作用和學生的.主體地位相統(tǒng)一的教學規(guī)律”,
從學生原有的知識和能力出發(fā),指導學生學會觀察、分析、歸納問題的能力。
學生只有不斷地解決問題、產(chǎn)生成就感的過程中,才能真正地提高學習的興趣,也只有這樣才能“學”有新“思”,“思”有新“得”。
。ǘ┙谭
數(shù)學教育家波利亞曾經(jīng)說過:“學習任何知識的最佳途徑即是由自己去發(fā)現(xiàn),因為這種發(fā)現(xiàn)理解最深刻,也最容易掌握其中的發(fā)展規(guī)律、性質(zhì)和聯(lián)系。”根據(jù)學生的認知特點和知識水平,為落實重點、突破難點,本著以人為本,以學為中心的思想,本節(jié)課我將采用啟發(fā)式、合作探究的方式來進行教學。運用多媒體演示輔助教學的一種手段,以激發(fā)學生的求知欲,使學生主動參與數(shù)學實踐活動,以獨立思考和相互交流的形式,在教師的指導下發(fā)現(xiàn)問題、分析問題和解決問題。
五、教學過程分析
1、創(chuàng)設情境,引入問題。
新課標指出:“應該讓學生在具體生動的情境中學習數(shù)學”。在本節(jié)課的教學中,從我們熟悉的生活情境中提出問題,問題的設計改變了傳統(tǒng)目的明確的設計方式,給學生最大的思考空間,充分體現(xiàn)學生主體地位。
2、發(fā)現(xiàn)問題,探究新知。
數(shù)學概念的形成來自解決實際問題和數(shù)學自身發(fā)展的需要.但概念的高度抽象,造成了難懂、難教和難學,這就需要讓學生置身于符合自身實際的學習活動中去,從自己的經(jīng)驗和已有的知識基礎(chǔ)出發(fā),經(jīng)歷
“數(shù)學化”、“再創(chuàng)造”的活動過程.
3、深入探究,加深理解。
有效的數(shù)學學習過程,不能單純的模仿與記憶,數(shù)學思想的領(lǐng)悟和學習過程更是如此。讓學生在解題過程中親身經(jīng)歷和實踐體驗,師生互動學習,生生合作交流,共同探究.
4、當堂訓練,鞏固提高。
通過學生的主體參與,使學生深切體會到本節(jié)課的主要內(nèi)容和思想方法,從而實現(xiàn)對知識識的再次深化。
5、小結(jié)歸納,拓展深化。
小結(jié)歸納不僅是對知識的簡單回顧,還要發(fā)揮學生的主體地位,從知識、方法、經(jīng)驗等方面進行總結(jié)。
6、作業(yè)設計
作業(yè)分為必做題和選做題。
針對學生能力和水平的差異,進行分層訓練,在所有學生獲得共同知識基礎(chǔ)和基本能力的同時,讓學有余力的學生將學習從課堂延伸到課外,獲得更大的能力提升,這體現(xiàn)新課改理念,也是因材施教的教學原則的具體運用。
現(xiàn)代數(shù)學教學觀和新課改要求教學能從“讓學生學會”向“讓學生會學”轉(zhuǎn)變,使數(shù)學教學真正成為數(shù)學活動的教學。所以,本節(jié)課我們不僅僅是單純的傳授知識,而更應該重視對數(shù)學方法的滲透。從熟悉的知識出發(fā),學生自主探索、合作交流激發(fā)學生的學習興趣,突破難點,培養(yǎng)學生發(fā)現(xiàn)問題、解決問題的能力
六、板書設計
板書要基本體現(xiàn)整堂課的內(nèi)容與方法,體現(xiàn)課堂進程,能簡明扼要反映知識結(jié)構(gòu)及其相互聯(lián)系;突出本節(jié)重難點,能指導教師的教學進程、引導學生探索知識,啟迪學生思維。
我的說課到此結(jié)束,敬請各位專家、評委批評指正。
謝謝!
高中數(shù)學說課稿5
一、教材分析
1.從在教材中的地位與作用來看
《等比數(shù)列的前n項和》是數(shù)列這一章中的一個重要內(nèi)容,它不僅在現(xiàn)實生活中有著廣泛的實際應用,如儲蓄、分期付款的有關(guān)計算等等,而且公式推導過程中所滲透的類比、化歸、分類討論、整體變換和方程等思想方法,都是學生今后學習和工作中必備的數(shù)學素養(yǎng).
2.從學生認知角度看
從學生的思維特點看,很容易把本節(jié)內(nèi)容與等差數(shù)列前n項和從公式的形成、特點等方面進行類比,這是積極因素,應因勢利導.不利因素是:本節(jié)公式的推導與等差數(shù)列前n項和公式的推導有著本質(zhì)的不同,這對學生的思維是一個突破,另外,對于q=1這一特殊情況,學生往往容易忽視,尤其是在后面使用的過程中容易出錯.
3.學情分析
教學對象是剛進入高中的學生,雖然具有一定的分析問題和解決問題的能力,邏輯思維能力也初步形成,但由于年齡的原因,思維盡管活躍、敏捷,卻缺乏冷靜、深刻,因此片面、不嚴謹.
4.重點、難點
教學重點:公式的推導、公式的特點和公式的運用.
教學難點:公式的推導方法和公式的靈活運用.
公式推導所使用的“錯位相減法”是高中數(shù)學數(shù)列求和方法中最常用的方法之一,它蘊含了重要的數(shù)學思想,所以既是重點也是難點.
二、目標分析
知識與技能目標:
理解并掌握等比數(shù)列前n項和公式的推導過程、公式的特點,在此基礎(chǔ)
上能初步應用公式解決與之有關(guān)的問題.
過程與方法目標:
通過對公式推導方法的探索與發(fā)現(xiàn),向?qū)W生滲透特殊到一般、類比與轉(zhuǎn)
化、分類討論等數(shù)學思想,培養(yǎng)學生觀察、比較、抽象、概括等邏輯思維能力和逆向思維的能力.
情感與態(tài)度價值觀:
通過對公式推導方法的探索與發(fā)現(xiàn),優(yōu)化學生的思維品質(zhì),滲透事物之
間等價轉(zhuǎn)化和理論聯(lián)系實際的辯證唯物主義觀點.
三、過程分析
學生是認知的主體,設計教學過程必須遵循學生的認知規(guī)律,盡可能地讓學生去經(jīng)歷知識的形成與發(fā)展過程,結(jié)合本節(jié)課的特點,我設計了如下的教學過程:
1.創(chuàng)設情境,提出問題
在古印度,有個名叫西薩的人,發(fā)明了國際象棋,當時的印度國王大為贊賞,對他說:我可以滿足你的任何要求.西薩說:請給我棋盤的64個方格上,第一格放1粒小麥,第二格放2粒,第三格放4粒,往后每一格都是前一格的兩倍,直至第64格.國王令宮廷數(shù)學家計算,結(jié)果出來后,國王大吃一驚.為什么呢?
設計意圖:設計這個情境目的是在引入課題的同時激發(fā)學生的興趣,調(diào)動學習的積極性.故事內(nèi)容緊扣本節(jié)課的主題與重點.
此時我問:同學們,你們知道西薩要的是多少粒小麥嗎?引導學生寫出麥?倲(shù).帶著這樣的問題,學生會動手算了起來,他們想到用計算器依次算出各項的值,然后再求和.這時我對他們的這種思路給予肯定.
設計意圖:在實際教學中,由于受課堂時間限制,教師舍不得花時間讓學生去做所謂的“無用功”,急急忙忙地拋出“錯位相減法”,這樣做有悖學生的認知規(guī)律:求和就想到相加,這是合乎邏輯順理成章的事,教師為什么不相加而馬上相減呢?在整個教學關(guān)鍵處學生難以轉(zhuǎn)過彎來,因而在教學中應舍得花時間營造知識形成過程的氛圍,突破學生學習的障礙.同時,形成繁難的情境激起了學生的求知欲,迫使學生急于尋求解決問題的`新方法,為后面的教學埋下伏筆.
2.師生互動,探究問題
在肯定他們的思路后,我接著問:1,2,22,…,263是什么數(shù)列?有何特征?應歸結(jié)為什么數(shù)學問題呢?
探討1:,記為(1)式,注意觀察每一項的特征,有何聯(lián)系?(學生會發(fā)現(xiàn),后一項都是前一項的2倍)
探討2:如果我們把每一項都乘以2,就變成了它的后一項,(1)式兩邊同乘以2則有,記為(2)式.比較(1)(2)兩式,你有什么發(fā)現(xiàn)?
設計意圖:留出時間讓學生充分地比較,等比數(shù)列前n項和的公式推導關(guān)鍵是變“加”為“減”,在教師看來這是“天經(jīng)地義”的,但在學生看來卻是“不可思議”的,因此教學中應著力在這兒做文章,從而抓住培養(yǎng)學生的辯證思維能力的良好契機.
經(jīng)過比較、研究,學生發(fā)現(xiàn):(1)、(2)兩式有許多相同的項,把兩式相減,相同的項就消去了,得到:.老師指出:這就是錯位相減法,并要求學生縱觀全過程,反思:為什么(1)式兩邊要同乘以2呢?
設計意圖:經(jīng)過繁難的計算之苦后,突然發(fā)現(xiàn)上述解法,不禁驚呼:真是太簡潔了!讓學生在探索過程中,充分感受到成功的情感體驗,從而增強學習數(shù)學的興趣和學好數(shù)學的信心.
3.類比聯(lián)想,解決問題
這時我再順勢引導學生將結(jié)論一般化,
這里,讓學生自主完成,并喊一名學生上黑板,然后對個別學生進行指導.
設計意圖:在教師的指導下,讓學生從特殊到一般,從已知到未知,步步深入,讓學生自己探究公式,從而體驗到學習的愉快和成就感.
對不對?這里的q能不能等于1?等比數(shù)列中的公比能不能為
1q=1時是什么數(shù)列?此時sn=?(這里引導學生對q進行分類討論,得出公式,同時為后面的例題教學打下基礎(chǔ).)
再次追問:結(jié)合等比數(shù)列的通項公式an=a1qn-1,如何把sn用a1、an、q表示出來?(引導學生得出公式的另一形式)
設計意圖:通過反問精講,一方面使學生加深對知識的認識,完善知識結(jié)構(gòu),另一方面使學生由簡單地模仿和接受,變?yōu)閷χR的主動認識,從而進一步提高分析、類比和綜合的能力.這一環(huán)節(jié)非常重要,盡管時間有時比較少,甚至僅僅幾句話,然而卻有畫龍點睛之妙用.
4.討論交流,延伸拓展
高中數(shù)學說課稿6
我將從教學理念;教材分析;教學目標;教學過程;教法、學法;教學評價六個方面來陳述我對本節(jié)課的設計方案。
一、教學理念
新的課程標準明確指出“數(shù)學是人類文化的重要組成部分,構(gòu)成了公民所必須具備的一種基本素質(zhì)!逼浜x就是:我們不僅要重視數(shù)學的應用價值,更要注重其思維價值和人文價值。
因此,創(chuàng)造性地使用教材,積極開發(fā)、利用各種教學資源,創(chuàng)設教學情境,讓學生通過主動參與、積極思考、與人合作交流和創(chuàng)新等過程,獲得情感、能力、知識的全面發(fā)展。本節(jié)課力圖打破常規(guī),充分體現(xiàn)以學生為本,全方位培養(yǎng)、提高學生素質(zhì),實現(xiàn)課程觀念、教學方式、學習方式的轉(zhuǎn)變。
二、教材分析
三角函數(shù)是中學數(shù)學的重要內(nèi)容之一,它既是解決生產(chǎn)實際問題的工具,又是學習高等數(shù)學及其它學科的基礎(chǔ)。本節(jié)課是在學習了任意角的三角函數(shù),兩角和與差的三角函數(shù)以及正、余弦函數(shù)的圖象和性質(zhì)后,進一步研究函數(shù)y=Asin(ωx+φ)的簡圖的畫法,由此揭示這類函數(shù)的圖象與正弦曲線的關(guān)系,以及A、ω、φ的物理意義,并通過圖象的變化過程,進一步理解正、余弦函數(shù)的性質(zhì),它是研究函數(shù)圖象變換的一個延伸,也是研究函數(shù)性質(zhì)的一個直觀反映。共3課時,本節(jié)課是繼學習完振幅、周期、初相變換后的第二課時。
本節(jié)課倡導學生自主探究,在教師的引導下,通過五點作圖法正確找出函數(shù)y=sinx到y(tǒng)=sin(ωx+φ)的圖象變換規(guī)律是本節(jié)課的重點。
難點是對周期變換、相位變換先后順序調(diào)整后,將影響圖象平移量的理解。因此,分析清不管哪種順序變換,都是對一個字母x而言的.變換成為突破本節(jié)課教學難點的關(guān)鍵。
依據(jù)《課標》,根據(jù)本節(jié)課內(nèi)容和學生的實際,我確定如下教學目標。
三、教學目標
。壑R與技能]
通過“五點作圖法”正確找出函數(shù)y=sinx到y(tǒng)=sin(ωx+φ)的圖象變換規(guī)律,能用五點作圖法和圖象變換法畫出函數(shù)y=Asin(ωx+φ)的簡圖,能舉一反三地畫出函數(shù)y=Asin(ωx+φ)+k和y=Acos(ωx+φ)的簡圖。
。圻^程與方法]
通過引導學生對函數(shù)y=sinx到y(tǒng)=sin(ωx+φ)的圖象變換規(guī)律的探索,讓學生體會到由簡單到復雜,特殊到一般的化歸思想;并通過對周期變換、相位變換先后順序調(diào)整后,將影響圖象變換這一難點的突破,讓學生學會抓住問題的主要矛盾來解決問題的基本思想方法。
。矍楦袘B(tài)度與價值觀]
課堂中,通過對問題的自主探究,培養(yǎng)學生的獨立意識和獨立思考能力;小組交流中,學會合作意識;在解決問題的難點時,培養(yǎng)學生解決問題抓主要矛盾的思想。在問題逐步深入的研究中喚起學生追求真理,樂于創(chuàng)新的情感需求,引發(fā)學生渴求知識的強烈愿望,樹立科學的人生觀、價值觀。
四、教學過程(六問三練)
1、設置情境
《函數(shù)y=Asin(ωx+φ)的圖象(第二課時)》說課稿。
高中數(shù)學說課稿7
尊敬的各位考官:
大家好,我是今天的X號考生,今天我說課的題目是《對數(shù)函數(shù)及其性質(zhì)》。
新課標指出:高中教育屬于基礎(chǔ)教育,具有基礎(chǔ)性,且具有多樣性與選擇性,使不同的學生在數(shù)學上得到不同的發(fā)展。今天我將貫徹這一理念從教材分析、學情分析、教學過程等幾個方面展開我的說課。
一、說教材
首先,我來談談我對教材的理解。
對數(shù)函數(shù)的概念及性質(zhì)是人教A版必修1第二章的內(nèi)容,本節(jié)課著重講授對數(shù)函數(shù)的概念、對數(shù)函數(shù)的圖象及性質(zhì)。前面學生已經(jīng)學習了函數(shù)的概念,也對指數(shù)函數(shù)的概念、圖象和性質(zhì)進行了探究。之前的學習,為本節(jié)課的知識以及經(jīng)驗都起到了鋪墊作用。從學生已有的知識經(jīng)驗出發(fā),引導學生發(fā)現(xiàn)問題、解決問題,為進一步綜合運用初等函數(shù)解決生產(chǎn)生活中以及科研中的問題起到了重要的怍用。
二、說學情
合理把握學情是上好一堂課的基礎(chǔ),下面我來談談學生的實際情況。
高中的學生掌握了一定的基礎(chǔ)知識以及解決問題的經(jīng)驗,分析問題、解決問題以及動手能力較好;诖,本節(jié)課注重引導學生動腦思考,更富有啟發(fā)性。引導學生思考、總結(jié),充分參與教學過程,進一步發(fā)展學生發(fā)現(xiàn)問題、分析問題、解決問題的能力。
三、說教學目標
根據(jù)以上對教材的分析以及對學情的把握,我制定了如下三維教學目標:
(一)知識與技能
掌握對數(shù)函數(shù)的概念,會畫對數(shù)函數(shù)的圖象,根據(jù)對數(shù)函數(shù)的圖象理解對數(shù)函數(shù)的性質(zhì)。
。ǘ┻^程與方法
通過對數(shù)函數(shù)性質(zhì)的探究過程,體會從特殊到一般的方法以及數(shù)形結(jié)合的數(shù)學思想方法。
。ㄈ┣楦袘B(tài)度價值觀
通過本節(jié)的學習,體驗數(shù)學的嚴謹性,養(yǎng)成細心觀察、認真分析、嚴謹思考的良好思維習慣。
四、說教學重難點
我認為一節(jié)好的`數(shù)學課,從教學內(nèi)容上說一定要突出重點、突破難點。而教學重點的確立與我本節(jié)課的內(nèi)容肯定是密不可分的。那么根據(jù)授課內(nèi)容可以確定本節(jié)課的教學重點是:對數(shù)函數(shù)的概念、圖象和性質(zhì)。教學難點是:通過對數(shù)函數(shù)的圖象歸納對數(shù)函數(shù)的性質(zhì)。
五、說教法和學法
現(xiàn)代教學理論認為,教學過程中,以學生為主體,教師為主導,教師是學習的組織者、引導者、合作者,教學的一切活動必須以強調(diào)學生的主動性、積極性為出發(fā)點。結(jié)合本節(jié)課的內(nèi)容特點和學生的年齡特征,本節(jié)課我將采用講授法、練習法、小組討論法等教學方法。
六、說教學過程
在這節(jié)課的教學過程中,我注重突出重點,條理清晰,緊湊合理。各項活動的安排也注重互動、交流,最大限度的調(diào)動學生參與課堂的積極性、主動性。
高中數(shù)學說課稿8
【教材分析】
1.本節(jié)教材的地位與作用
本節(jié)主要研究閉區(qū)間上的連續(xù)函數(shù)最大值和最小值的求法和實際應用,分兩課時,這里是第一課時,它是在學生已經(jīng)會求某些函數(shù)的最值,并且已經(jīng)掌握了性質(zhì):"如果f(x)是閉區(qū)間[a,b]上的連續(xù)函數(shù),那么f(x)在閉區(qū)間[a,b]上有最大值和最小值",以及會求可導函數(shù)的極值之后進行學習的,學好這一節(jié),學生將會求更多的函數(shù)的最值,運用本節(jié)知識可以解決科技、經(jīng)濟、社會中的一些如何使成本最低、產(chǎn)量最高、效益最大等實際問題.這節(jié)課集中體現(xiàn)了數(shù)形結(jié)合、理論聯(lián)系實際等重要的數(shù)學思想方法,學好本節(jié),對于進一步完善學生的知識結(jié)構(gòu),培養(yǎng)學生用數(shù)學的意識都具有極為重要的意義.
2.教學重點
會求閉區(qū)間上連續(xù)開區(qū)間上可導的函數(shù)的最值.
3.教學難點
高三年級學生雖然已經(jīng)具有一定的知識基礎(chǔ),但由于對求函數(shù)極值還不熟練,特別是對優(yōu)化解題過程依據(jù)的理解會有較大的困難,所以這節(jié)課的難點是理解確定函數(shù)最值的方法.
4.教學關(guān)鍵
本節(jié)課突破難點的關(guān)鍵是:理解方程f′(x)=0的解,包含有指定區(qū)間內(nèi)全部可能的極值點.
【教學目標】
根據(jù)本節(jié)教材在高中數(shù)學知識體系中的地位和作用,結(jié)合學生已有的認知水平,制定本節(jié)如下的教學目標:
1.知識和技能目標
。1)理解函數(shù)的最值與極值的區(qū)別和聯(lián)系.
。2)進一步明確閉區(qū)間[a,b]上的連續(xù)函數(shù)f(x),在[a,b]上必有最大、最小值.
(3)掌握用導數(shù)法求上述函數(shù)的最大值與最小值的方法和步驟.
2.過程和方法目標
。1)了解開區(qū)間內(nèi)的連續(xù)函數(shù)或閉區(qū)間上的不連續(xù)函數(shù)不一定有最大、最小值.
。2)理解閉區(qū)間上的連續(xù)函數(shù)最值存在的可能位置:極值點處或區(qū)間端點處.
。3)會求閉區(qū)間上連續(xù),開區(qū)間內(nèi)可導的函數(shù)的最大、最小值.
3.情感和價值目標
。1)認識事物之間的的區(qū)別和聯(lián)系.
。2)培養(yǎng)學生觀察事物的能力,能夠自己發(fā)現(xiàn)問題,分析問題并最終解決問題.
。3)提高學生的數(shù)學能力,培養(yǎng)學生的創(chuàng)新精神、實踐能力和理性精神.
【教法選擇】
根據(jù)皮亞杰的建構(gòu)主義認識論,知識是個體在與環(huán)境相互作用的過程中逐漸建構(gòu)的結(jié)果,而認識則是起源于主客體之間的相互作用.
本節(jié)課在幫助學生回顧肯定了閉區(qū)間上的連續(xù)函數(shù)一定存在最大值和最小值之后,引導學生通過觀察閉區(qū)間內(nèi)的連續(xù)函數(shù)的幾個圖象,自己歸納、總結(jié)出函數(shù)最大值、最小值存在的可能位置,進而探索出函數(shù)最大值、最小值求解的方法與步驟,并優(yōu)化解題過程,讓學生主動地獲得知識,老師只是進行適當?shù)囊龑,而不進行全部的灌輸.為突出重點,突破難點,這節(jié)課主要選擇以合作探究式教學法組織教學.
【學法指導】
對于求函數(shù)的最值,高三學生已經(jīng)具備了良好的知識基礎(chǔ),剩下的問題就是有沒有一種更一般的方法,能運用于更多更復雜函數(shù)的求最值問題?教學設計中注意激發(fā)起學生強烈的求知欲望,使得他們能積極主動地觀察、分析、歸納,以形成認識,參與到課堂活動中,充分發(fā)揮他們作為認知主體的作用.
【教學過程】
本節(jié)課的教學,大致按照"創(chuàng)設情境,鋪墊導入--合作學習,探索新知--指導應用,鼓勵創(chuàng)新--歸納小結(jié),反饋回授"四個環(huán)節(jié)進行組織.
教學環(huán)節(jié)
教學內(nèi)容
設計意圖
一、創(chuàng)設情境,鋪墊導入
1.問題情境:在日常生活、生產(chǎn)和科研中,常常會遇到求什么條件下可以使成本最低、產(chǎn)量最大、效益最高等問題,這往往可以歸結(jié)為求函數(shù)的最大值與最小值.
如圖,有一長80cm,寬60cm
的矩形不銹鋼薄板,用此薄板折
成一個長方體無蓋容器,要分別
過矩形四個頂點處各挖去一個
全等的小正方形,按加工要求,長方體的高不小于10cm且不大于
20cm.設長方體的高為xcm,體積
為Vcm3.問x為多大時,V最大?
并求這個最大值.
解:由長方體的高為xcm,可知其底面兩邊長分別是
。80-2x)cm,(60-2x)cm,(10≤x≤20).
所以體積V與高x有以下函數(shù)關(guān)系
V=(80-2x)(60-2x)x
=4(40-x)(30-x)x.
2.引出課題:分析函數(shù)關(guān)系可以看出,以前學過的方法在這個問題中較難湊效,這節(jié)課我們將學習一種很重要的方法,來求某些函數(shù)的最值.
以實例引發(fā)思考,有利于學生感受到數(shù)學來源于現(xiàn)實生活,培養(yǎng)學生用數(shù)學的意識,同時營造出寬松、和諧、積極主動的課堂氛圍,在新舊知識的矛盾沖突中,激發(fā)起學生的探究熱情.
實際問題中,函數(shù)和自變量x范圍的設置,都緊扣本節(jié)課的核心:確定閉區(qū)間上的連續(xù)函數(shù)的最(大)值.
通過運用幾何畫板演示,增強直觀性,幫助學生迅速準確地發(fā)現(xiàn)相關(guān)的數(shù)量關(guān)系.提出問題后,引導學生發(fā)現(xiàn),求所列函數(shù)的最大值是以前學習過的方法不能解決的,由此引出新課,使學生深感繼續(xù)學習新知識的必要性,為進一步的研究作好鋪墊.
教學環(huán)節(jié)
教學內(nèi)容
設計意圖
二、合作學習,探索新知
1.我們知道,在閉區(qū)間[a,b]上連續(xù)的函數(shù)f(x)在[a,b]上必有最大值與最小值.
問題1:如果是在開區(qū)間(a,b)上情況如何?
問題2:如果[a,b]上不連續(xù)一定還成立嗎?
2.如圖為連續(xù)函數(shù)f(x)的圖象:在閉區(qū)間[a,b]上連續(xù)函數(shù)f(x)的最大值、最小值分別是什么?分別在何處取得?3.以上分析,說明求函數(shù)f(x)在閉區(qū)間[a,b]上最值的關(guān)鍵是什么?
歸納:設函數(shù)f(x)在[a,b]上連續(xù),在(a,b)內(nèi)可導,求f(x)在[a,b]上的最大值與最小值的步驟如下:
。1)求f(x)在(a,b)內(nèi)的極值;
。2)將f(x)的`各極值與f(a)、f(b)比較,其中最大的一個是最大值,最小的一個是最小值.
通過對已有相關(guān)知識的回顧和深入分析,自然地提出問題:閉區(qū)間上的連續(xù)函數(shù)最大值和最小值在何處取得?如何能求得最大值和最小值?以問題制造懸念,引領(lǐng)著學生來到新知識的生成場景中.
對取得最大值最小值的兩種可能位置的結(jié)論,在高中階段不作證明,為使學生形成更深刻的印象,更好地進行發(fā)現(xiàn),教學中通過改變區(qū)間位置,引導學生觀察各種區(qū)間內(nèi)圖象上最大值最小值取得的位置,形成感性認識,進而上升到理性的高度.
為新知的發(fā)現(xiàn)奠定基礎(chǔ)后,提出教學目標,讓學生帶著問題走進課堂,既明確了學習目的,又激發(fā)起學生的求知熱情.
學生在合作交流的探究氛圍中思考、質(zhì)疑、傾聽、表述,體驗到成功的喜悅,學會學習、學會合作.
在整個新知形成過程中,教師的身份始終是啟發(fā)者、鼓勵者和指導者,以提高學生抽象概括、分析歸納及語言表述等基本的數(shù)學思維能力.深化對概念意義的理解:極值反映函數(shù)的一種局部性質(zhì),最值則反映函數(shù)的一種整體性質(zhì).
三、指導應用,鼓勵創(chuàng)新
例2如圖,有一長80cm,寬60cm
的矩形不銹鋼薄板,用此薄板折
成一個長方體無蓋容器,要分別
過矩形四個頂點處各挖去一個
全等的小正方形,按加工要求,長方體的高不小于10cm不大于
20cm,設長方體的高為xcm,體積
為Vcm3.問x為多大時,V最大?
并求這個最大值.分析:建立V與x的函數(shù)的關(guān)系后,問題相當于求x為何值時,V最小,可用本節(jié)課學習的導數(shù)法加以解決.
例題2的解決與本課的引例前后呼應,繼續(xù)鞏固用導數(shù)法求閉區(qū)間上連續(xù)函數(shù)的最值,同時也讓學生體會到現(xiàn)實生活中蘊含著大量的數(shù)學信息,培養(yǎng)他們用數(shù)學的意識和能力.
四、歸納小結(jié),反饋回授
課堂小結(jié):
1.在閉區(qū)間[a,b]上連續(xù)的函數(shù)f(x)在[a,b]上必有最大值與最小值;2.求閉區(qū)間上連續(xù)函數(shù)的最值的方法與步驟;3.利用導數(shù)求函數(shù)最值的關(guān)鍵是對可導函數(shù)使導數(shù)為零的點的判定.
作業(yè)布置:P1391、2、3
通過課堂小結(jié),深化對知識理解,完善認識結(jié)構(gòu),領(lǐng)悟思想方法,強化情感體驗,提高認識能力.課外作業(yè)有利于教師發(fā)現(xiàn)教學中的不足,及時反饋調(diào)節(jié).
【教學設計說明】
本節(jié)課旨在加強學生運用導數(shù)的基本思想去分析和解決問題的意識和能力,即利用導數(shù)知識求閉區(qū)間上可導的連續(xù)函數(shù)的最值,這是導數(shù)作為數(shù)學工具的一個具體體現(xiàn),整堂課對閉區(qū)間上的連續(xù)函數(shù)的最大值和最小值以"是否存在?存在于哪里?怎么求?"為線索展開.
1.由于學生對極限和導數(shù)的知識學習還談不上深入熟練,因此教學中從直觀性和新舊知識的矛盾沖突中激發(fā)學生的探究熱情,充分利用學生已有的知識體驗和生活經(jīng)驗,遵循學生認知的心理規(guī)律,努力實現(xiàn)課程改革中以"學生的發(fā)展為本"的基本理念.
2.關(guān)于教學過程,對于本節(jié)課的重點:求閉區(qū)間上連續(xù),開區(qū)間上可導的函數(shù)的最值的方法和一般步驟,必須讓學生在課堂上就能掌握.對于難點:求最值問題的優(yōu)化方法及相關(guān)問題,層層遞進逐步提出,讓學生帶著問題走進課堂,師生共同探究解決,知識的建構(gòu)過程充分調(diào)動學生的主觀能力性.
3.在教學手段上,制作多媒體課件輔助教學,使得數(shù)學知識讓學生更易于理解和接受;課堂教學與現(xiàn)代教育技術(shù)的有機整合,大大提高了課堂教學效率.
4.關(guān)于教學法,為充分調(diào)動學生的學習積極性,讓學生能夠主動愉快地學習,本節(jié)課始終貫徹"教師為主導、學生為主體、探究為主線、思維為核心"的數(shù)學教學思想,引導學生主動參與到課堂教學全過程中.
高中數(shù)學說課稿9
大家好,今天我向大家說課的題目是《正弦定理》。下面我將從以下幾個方面介紹我這堂課的教學設計。
一、教材分析
本節(jié)知識是必修五第一章《解三角形》的第一節(jié)內(nèi)容,與初中學習的三角形的邊和角的基本關(guān)系有密切的聯(lián)系與判定三角形的全等也有密切聯(lián)系,在日常生活和工業(yè)生產(chǎn)中也時常有解三角形的問題,而且解三角形和三角函數(shù)聯(lián)系在高考當中也時常考一些解答題。因此,正弦定理和余弦定理的知識非常重要。
根據(jù)上述教材內(nèi)容分析,考慮到學生已有的認知結(jié)構(gòu)心理特征及原有知識水平,制定如下教學目標:
認知目標:通過創(chuàng)設問題情境,引導學生發(fā)現(xiàn)正弦定理的內(nèi)容,掌握正弦定理的內(nèi)容及其證明方法,使學生會運用正弦定理解決兩類基本的解三角形問題。
能力目標:引導學生通過觀察,推導,比較,由特殊到一般歸納出正弦定理,培養(yǎng)學生的創(chuàng)新意識和觀察與邏輯思維能力,能體會用向量作為數(shù)形結(jié)合的工具,將幾何問題轉(zhuǎn)化為代數(shù)問題。
情感目標:面向全體學生,創(chuàng)造平等的教學氛圍,通過學生之間、師生之間的交流、合作和評價,調(diào)動學生的主動性和積極性,激發(fā)學生學習的興趣。
教學重點:正弦定理的內(nèi)容,正弦定理的證明及基本應用。 教學難點:已知兩邊和其中一邊的對角解三角形時判斷解的個數(shù)。
二、教法
根據(jù)教材的內(nèi)容和編排的特點,為是更有效地突出重點,空破難點,以學業(yè)生的發(fā)展為本,遵照學生的認識規(guī)律,本講遵照以教師為主導,以學生為主體,訓練為主線的`指導思想, 采用探究式課堂教學模式,即在教學過程中,在教師的啟發(fā)引導下,以學生獨立自主和合作交流為前提,以“正弦定理的發(fā)現(xiàn)”為基本探究內(nèi)容,以生活實際為參照對象,讓學生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導,并逐步得到深化。
三、學法
指導學生掌握“觀察——猜想——證明——應用”這一思維方法,采取個人、小組、集體等多種解難釋疑的嘗試活動,將自己所學知識應用于對任意三角形性質(zhì)的探究。讓學生在問題情景中學習,觀察,類比,思考,探究,概括,動手嘗試相結(jié)合,體現(xiàn)學生的主體地位,增強學生由特殊到一般的數(shù)學思維能力,形成了實事求是的科學態(tài)度,增強了鍥而不舍的求學精神。
四、教學過程
(一)創(chuàng)設情境(3分鐘)
“興趣是最好的老師”,如果一節(jié)課有個好的開頭,那就意味著成功了一半,本節(jié)課由一個實際問題引入,“工人師傅的一個三角形模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長為1m,想修好這個零件,但他不知道AC和BC的長度是多少好去截料,你能幫師傅這個忙嗎?”激發(fā)學生幫助別人的熱情和學習的興趣,從而進入今天的學習課題。
(二)猜想—推理—證明(15分鐘)
激發(fā)學生思維,從自身熟悉的特例(直角三角形)入手進行研究,發(fā)現(xiàn)正弦定理。 提問:那結(jié)論對任意三角形都適用嗎?(讓學生分小組討論,并得出猜想)
在三角形中,角與所對的邊滿足關(guān)系
注意:1.強調(diào)將猜想轉(zhuǎn)化為定理,需要嚴格的理論證明。
2.鼓勵學生通過作高轉(zhuǎn)化為熟悉的直角三角形進行證明。
3.提示學生思考哪些知識能把長度和三角函數(shù)聯(lián)系起來,繼而思考向量分析層面,用數(shù)量積作為工具證明定理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學思想。
(三)總結(jié)--應用(3分鐘)
1.正弦定理的內(nèi)容,討論可以解決哪幾類有關(guān)三角形的問題。
2.運用正弦定理求解本節(jié)課引入的三角形零件邊長的問題。自己參與實際問題的解決,能激發(fā)學生知識后用于實際的價值觀。
(四)講解例題(8分鐘)
1.例1. 在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形.
例1簡單,結(jié)果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來解三角形。
2. 例2. 在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形.
例2較難,使學生明確,利用正弦定理求角有兩種可能。要求學生熟悉掌握已知兩邊和其中
一邊的對角時解三角形的各種情形。完了把時間交給學生。
(五)課堂練習(8分鐘)
1.在△ABC中,已知下列條件,解三角形. (1)A=45°,C=30°,c=10cm (2)A=60°,B=45°,c=20cm
2. 在△ABC中,已知下列條件,解三角形. (1)a=20cm,b=11cm,B=30° (2)c=54cm,b=39cm,C=115°
學生板演,老師巡視,及時發(fā)現(xiàn)問題,并解答。
(六)小結(jié)反思(3分鐘)
1.它表述了三角形的邊與對角的正弦值的關(guān)系。
2.定理證明分別從直角、銳角、鈍角出發(fā),運用分類討論的思想。
3.會用向量作為數(shù)形結(jié)合的工具,將幾何問題轉(zhuǎn)化為代數(shù)問題。
五、教學反思
從實際問題出發(fā),通過猜想、實驗、歸納等思維方法,最后得到了推導出正弦定理。我們研究問題的突出特點是從特殊到一般,我們不僅收獲著結(jié)論,而且整個探索過程我們也掌握了研究問題的一般方法。在強調(diào)研究性學習方法,注重學生的主體地位,調(diào)動學生積極性,使數(shù)學教學成為數(shù)學活動的教學。
高中數(shù)學說課稿10
本節(jié)課講述的是人教版高一數(shù)學(上)3.2等差數(shù)列(第一課時)的內(nèi)容。
一、教材分析
1、教材的地位和作用:
數(shù)列是高中數(shù)學重要內(nèi)容之一,它不僅有著廣泛的實際應用,而且起著承前啟后的作用。一方面,數(shù)列作為一種特殊的函數(shù)與函數(shù)思想密不可分;另一方面,學習數(shù)列也為進一步學習數(shù)列的極限等內(nèi)容做好準備。而等差數(shù)列是在學生學習了數(shù)列的有關(guān)概念和給出數(shù)列的兩種方法——通項公式和遞推公式的基礎(chǔ)上,對數(shù)列的知識進一步深入和拓廣。同時等差數(shù)列也為今后學習等比數(shù)列提供了學習對比的依據(jù)。
2、教學目標
根據(jù)教學大綱的要求和學生的實際水平,確定了本次課的教學目標
a在知識上:理解并掌握等差數(shù)列的概念;了解等差數(shù)列的通項公式的推導過程及思想;初步引入“數(shù)學建!钡乃枷敕椒ú⒛苓\用。
b在能力上:培養(yǎng)學生觀察、分析、歸納、推理的能力;在領(lǐng)會函數(shù)與數(shù)列關(guān)系的前提下,把研究函數(shù)的方法遷移來研究數(shù)列,培養(yǎng)學生的知識、方法遷移能力;通過階梯性練習,提高學生分析問題和解決問題的能力。
c在情感上:通過對等差數(shù)列的研究,培養(yǎng)學生主動探索、勇于發(fā)現(xiàn)的求知精神;養(yǎng)成細心觀察、認真分析、善于總結(jié)的良好思維習慣。
3、教學重點和難點
根據(jù)教學大綱的要求我確定本節(jié)課的教學重點為:
、俚炔顢(shù)列的概念。
、诘炔顢(shù)列的通項公式的推導過程及應用。
由于學生第一次接觸不完全歸納法,對此并不熟悉因此用不完全歸納法推導等差數(shù)列的同項公式是這節(jié)課的一個難點。同時,學生對“數(shù)學建模”的思想方法較為陌生,因此用數(shù)學思想解決實際問題是本節(jié)課的另一個難點。
二、學情教法分析:
對于三中的高一學生,知識經(jīng)驗已較為豐富,他們的智力發(fā)展已到了形式運演階段,具備了教強的抽象思維能力和演繹推理能力,所以我在授課時注重引導、啟發(fā)、研究和探討以符合
這類學生的心理發(fā)展特點,從而促進思維能力的進一步發(fā)展。
針對高中生這一思維特點和心理特征,本節(jié)課我采用啟發(fā)式、討論式以及講練結(jié)合的教學方法,通過問題激發(fā)學生求知欲,使學生主動參與數(shù)學實踐活動,以獨立思考和相互交流的形式,在教師的指導下發(fā)現(xiàn)、分析和解決問題。
三、學法指導:
在引導分析時,留出學生的思考空間,讓學生去聯(lián)想、探索,同時鼓勵學生大膽質(zhì)疑,圍繞中心各抒己見,把思路方法和需要解決的問題弄清。
四、教學程序
本節(jié)課的教學過程由(一)復習引入(二)新課探究(三)應用舉例(四)反饋練習(五)歸納小結(jié)(六)布置作業(yè),六個教學環(huán)節(jié)構(gòu)成。
(一)復習引入:
1.從函數(shù)觀點看,數(shù)列可看作是定義域為__________對應的一列函數(shù)值,從而數(shù)列的通項公式也就是相應函數(shù)的______。(N﹡;解析式)
通過練習1復習上節(jié)內(nèi)容,為本節(jié)課用函數(shù)思想研究數(shù)列問題作準備。
2.小明目前會100個單詞,他她打算從今天起不再背單詞了,結(jié)果不知不覺地每天忘掉2個單詞,那么在今后的五天內(nèi)他的單詞量逐日依次遞減為:100,98,96,94,92 ①
3. 小芳只會5個單詞,他決定從今天起每天背記10個單詞,那么在今后的五天內(nèi)他的單詞量逐日依次遞增為5,10,15,20,25 ②
通過練習2和3引出兩個具體的等差數(shù)列,初步認識等差數(shù)列的特征,為后面的概念學習建立基礎(chǔ),為學習新知識創(chuàng)設問題情境,激發(fā)學生的求知欲。由學生觀察兩個數(shù)列特點,引出等差數(shù)列的概念,對問題的總結(jié)又培養(yǎng)學生由具體到抽象、由特殊到一般的認知能力。
(二) 新課探究
1、由引入自然的給出等差數(shù)列的概念:
如果一個數(shù)列,從第二項開始它的每一項與前一項之差都等于同一常數(shù),這個數(shù)列就叫等差數(shù)列,
這個常數(shù)叫做等差數(shù)列的公差,通常用字母d來表示。強調(diào):
① “從第二項起”滿足條件;
②公差d一定是由后項減前項所得;
③每一項與它的前一項的差必須是同一個常數(shù)(強調(diào)“同一個常數(shù)” );
在理解概念的基礎(chǔ)上,由學生將等差數(shù)列的文字語言轉(zhuǎn)化為數(shù)學語言,歸納出數(shù)學表達式:
an+1-an=d (n≥1)同時為了配合概念的理解,我找了5組數(shù)列,由學生判斷是否為等差數(shù)列,是等差數(shù)列的找出公差。
1. 9 ,8,7,6,5,4,??;√ d=-1
2. 0.70,0.71,0.72,0.73,0.74??;√ d=0.01
3. 0,0,0,0,0,0,??.; √ d=0
4. 1,2,3,2,3,4,??;×
5. 1,0,1,0,1,??×
其中第一個數(shù)列公差<0,>0,第三個數(shù)列公差=0
由此強調(diào):公差可以是正數(shù)、負數(shù),也可以是0
2、第二個重點部分為等差數(shù)列的通項公式
在歸納等差數(shù)列通項公式中,我采用討論式的教學方法。給出等差數(shù)列的首項,公差d,由學生研究分組討論a4的通項公式。通過總結(jié)a4的通項公式由學生猜想a40的通項公式,進而歸納an的通項公式。整個過程由學生完成,通過互相討論的方式既培養(yǎng)了學生的協(xié)作意識又化解了教學難點。
若一等差數(shù)列{an }的首項是a1,公差是d,則據(jù)其定義可得:
a2 - a1 =d 即: a2 =a1 +d
a3 – a2 =d 即: a3 =a2 +d = a1 +2d
a4 – a3 =d 即: a4 =a3 +d = a1 +3d
??
猜想: a40 = a1 +39d,進而歸納出等差數(shù)列的通項公式:
an=a1+(n-1)d
此時指出:這種求通項公式的辦法叫不完全歸納法,這種導出公式的方法不夠嚴密,為了培養(yǎng)學生嚴謹?shù)膶W習態(tài)度,在這里向?qū)W生介紹另外一種求數(shù)列通項公式的辦法------迭加法:
a2 – a1 =d
a3 – a2 =d
a4 – a3 =d
??
an – an-1=d
將這(n-1)個等式左右兩邊分別相加,就可以得到 an– a1= (n-1) d即 an= a1+(n-1) d
。1)
當n=1時,(1)也成立,
所以對一切n∈N﹡,上面的公式都成立
因此它就是等差數(shù)列{an}的通項公式。
在迭加法的證明過程中,我采用啟發(fā)式教學方法。
利用等差數(shù)列概念啟發(fā)學生寫出n-1個等式。
對照已歸納出的通項公式啟發(fā)學生想出將n-1個等式相加。證出通項公式。
在這里通過該知識點引入迭加法這一數(shù)學思想,逐步達到“注重方法,凸現(xiàn)思想” 的教學要求
接著舉例說明:若一個等差數(shù)列{an}的首項是1,公差是2,得出這個數(shù)列的通項公式是:an=1+(n-1)×2 ,
即an=2n-1 以此來鞏固等差數(shù)列通項公式運用
同時要求畫出該數(shù)列圖象,由此說明等差數(shù)列是關(guān)于正整數(shù)n一次函數(shù),其圖像是均勻排開的無窮多個孤立點。用函數(shù)的思想來研究數(shù)列,使數(shù)列的性質(zhì)顯現(xiàn)得更加清楚。
。ㄈ⿷门e例
這一環(huán)節(jié)是使學生通過例題和練習,增強對通項公式含義的理解以及對通項公式的運用,提高解決實際問題的能力。通過例1和例2向?qū)W生表明:要用運動變化的'觀點看等差數(shù)列通項公式中的a1、d、n、an這4個量之間的關(guān)系。當其中的部分量已知時,可根據(jù)該公式求出另
一部分量。
例1 (1)求等差數(shù)列8,5,2,?的第20項;第30項;第40項
。2)-401是不是等差數(shù)列-5,-9,-13,?的項?如果是,是第幾項?
在第一問中我添加了計算第30項和第40項以加強鞏固等差數(shù)列通項公式;第二問實際上是求正整數(shù)解的問題,而關(guān)鍵是求出數(shù)列的通項公式an.
例2 在等差數(shù)列{an}中,已知a5=10,a12 =31,求首項a1與公差d。
在前面例1的基礎(chǔ)上將例2當作練習作為對通項公式的鞏固
例3 是一個實際建模問題
建造房屋時要設計樓梯,已知某大樓第2層的樓底離地面的高度為3米,第三層離地面5.8米,若樓梯設計為等高的16級臺階,問每級臺階高為多少米?
這道題我采用啟發(fā)式和討論式相結(jié)合的教學方法。啟發(fā)學生注意每級臺階“等高”使學生想到每級臺階離地面的高度構(gòu)成等差數(shù)列,引導學生將該實際問題轉(zhuǎn)化為數(shù)學模型------等差數(shù)列:(學生討論分析,分別演板,教師評析問題。問題可能出現(xiàn)在:項數(shù)學生認為是16項,應明確a1為第2層的樓底離地面的高度,a2表示第一級臺階離地面的高度而第16級臺階離地面高度為a17,可用課件展示實際樓梯圖以化解難點)。
設置此題的目的:1.加強同學們對應用題的綜合分析能力,2.通過數(shù)學實際問題引出等差數(shù)列問題,激發(fā)了學生的興趣;3.再者通過數(shù)學實例展示了“從實際問題出發(fā)經(jīng)抽象概括建立數(shù)學模型,最后還原說明實際問題的“數(shù)學建!钡臄(shù)學思想方法
(四)反饋練習
1、小節(jié)后的練習中的第1題和第2題(要求學生在規(guī)定時間內(nèi)完成)。目的:使學生熟悉通項公式,對學生進行基本技能訓練。
2、書上例3)梯子的最高一級寬33cm,最低一級寬110cm,中間還有10級,各級的寬度成等差數(shù)列。計算中間各級的寬度。
目的:對學生加強建模思想訓練。
3、若數(shù)例{an} 是等差數(shù)列,若 bn = k an ,(k為常數(shù))試證明:數(shù)列{bn}是等差數(shù)列
此題是對學生進行數(shù)列問題提高訓練,學習如何用定義證明數(shù)列問題同時強化了等差數(shù)列的概念。
。ㄎ澹w納小結(jié)(由學生總結(jié)這節(jié)課的收獲)
1.等差數(shù)列的概念及數(shù)學表達式.
強調(diào)關(guān)鍵字:從第二項開始它的每一項與前一項之差都等于同一常數(shù)
2.等差數(shù)列的通項公式 an= a1+(n-1) d會知三求一
3.用“數(shù)學建!彼枷敕椒ń鉀Q實際問題
(六)布置作業(yè)
必做題:課本P114 習題3.2第2,6 題
選做題:已知等差數(shù)列{an}的首項a1=-24,從第10項開始為正數(shù),求公差d的取值范圍。
。康模和ㄟ^分層作業(yè),提高同學們的求知欲和滿足不同層次的學生需求)
五、板書設計
在板書中突出本節(jié)重點,將強調(diào)的地方如定義中,“從第二項起”及“同一常數(shù)”等幾個字用紅色粉筆標注,同時給學生留有作題的地方,整個板書充分體現(xiàn)了精講多練的教學方法。
高中數(shù)學說課稿11
各位評委、各位老師:大家好!
我叫李長杉,來自甘肅省嘉峪關(guān)市第一中學。今天我說課的課題是《一元二次不等式的解法》(第一課時)。下面我將圍繞本節(jié)課"教什么?"、"怎樣教?"以及"為什么這樣教?"三個問題,從教材內(nèi)容分析、教法學法分析、教學過程分析和課堂意外預案等幾個方面逐一加以分析和說明。
一。教材內(nèi)容分析:
1.本節(jié)課內(nèi)容在整個教材中的地位和作用。
概括地講,本節(jié)課內(nèi)容的地位體現(xiàn)在它的基礎(chǔ)性,作用體現(xiàn)在它的工具性。一元二次不等式的解法是初中一元一次不等式或一元一次不等式組的延續(xù)和深化,對已學習過的集合知識的鞏固和運用具有重要的作用,也與后面的函數(shù)、數(shù)列、三角函數(shù)、線形規(guī)劃、直線與圓錐曲線以及導數(shù)等內(nèi)容密切相關(guān)。許多問題的解決都會借助一元二次不等式的解法。因此,一元二次不等式的解法在整個高中數(shù)學教學中具有很強的基礎(chǔ)性,體現(xiàn)出很大的工具作用。
2.教學目標定位。
根據(jù)教學大綱要求、高考考試大綱說明、新課程標準精神、高一學生已有的知識儲備狀況和學生心理認知特征,我確定了四個層面的教學目標。第一層面是面向全體學生的知識目標:熟練掌握一元二次不等式的兩種解法,正確理解一元二次方程、一元二次不等式和二次函數(shù)三者的關(guān)系。第二層面是能力目標,培養(yǎng)學生運用數(shù)形結(jié)合與等價轉(zhuǎn)化等數(shù)學思想方法解決問題的能力,提高運算和作圖能力。第三層面是德育目標,通過對解不等式過程中等與不等對立統(tǒng)一關(guān)系的認識,向?qū)W生逐步滲透辨證唯物主義思想。第四層面是情感目標,在教師的啟發(fā)引導下,學生自主探究,交流討論,培養(yǎng)學生的合作意識和創(chuàng)新精神。
3.教學重點、難點確定。
本節(jié)課是在復習了一次不等式的解法之后,利用二次函數(shù)的圖象研究一元二次不等式的解法。只要學生能夠理解一元二次方程、一元二次不等式和二次函數(shù)三者的關(guān)系,并利用其關(guān)系解不等式即可。因此,我確定本節(jié)課的教學重點為一元二次不等式的解法,關(guān)鍵是一元二次方程、一元二次不等式和二次函數(shù)三者的關(guān)系。
二。教法學法分析:
數(shù)學是發(fā)展學生思維、培養(yǎng)學生良好意志品質(zhì)和美好情感的重要學科,在教學中,我們不僅要使學生獲得知識、提高解題能力,還要讓學生在教師的啟發(fā)引導下學會學習、樂于學習,感受數(shù)學學科的人文思想,使學生在學習中培養(yǎng)堅強的意志品質(zhì)、形成良好的道德情感。為了更好地體現(xiàn)課堂教學中"教師為主導,學生為主體"的教學關(guān)系和"以人為本,以學定教"的教學理念,在本節(jié)課的教學過程中,我將緊緊圍繞教師組織——啟發(fā)引導,學生探究——交流發(fā)現(xiàn),組織開展教學活動。我設計了①創(chuàng)設情景——引入新課,②交流探究——發(fā)現(xiàn)規(guī)律,③啟發(fā)引導——形成結(jié)論,④練習小結(jié)——深化鞏固,⑤思維拓展——提高能力,五個環(huán)環(huán)相扣、層層深入的教學環(huán)節(jié),在教學中注意關(guān)注整個過程和全體學生,充分調(diào)動學生積極參與教學過程的每個環(huán)節(jié)。
三。教學過程分析:
1.創(chuàng)設情景——引入新課。我們常說"興趣是最好的老師",長期以來,學生對學習數(shù)學缺乏興趣,甚至失去信心,一個重要的原因,是老師在教學中不重視學生對學習的情感體驗,教學應該充分考慮學生的情感和需要,想方設法讓學生在學習中樹立信心,感受學習的樂趣。根據(jù)教材內(nèi)容的安排,我以學生熟悉的畫一次函數(shù)圖象、求一次方程和一次不等式的解為背景知識切入,設置一個練習題組,一方面讓學生總結(jié)復習已有知識,為后面學習二次不等式的解法打下基礎(chǔ),做好鋪墊,另一方面,使學生在自己熟悉的問題中首先獲得解題成功的快樂體驗,然后以20xx年江蘇省的一道高考試題為引子,引入本節(jié)課的新授內(nèi)容。對于本題,引導學生,利用上面解練習題組1的方法,畫出二次函數(shù)圖象來解答。二次函數(shù)是初中數(shù)學的重要內(nèi)容,本題又給出了函數(shù)圖象上許多點,相信學生畫出圖象應該不成問題,只要教師適當點撥,學生不難得到正確答案。以高考試題為背景引入新課,可以提高學生興趣,抓住學生眼球,吸引學生注意力,還可以讓學生實實在在感受到,高考題就在我們的課本中,就在我們平常的'練習中。
2.探究交流——發(fā)現(xiàn)規(guī)律。從特殊到一般是我們發(fā)現(xiàn)問題、尋求規(guī)律、揭示問題本質(zhì)最常用的方法之一。我把課本例題1、2編為練習題組(一),交由學生用上面解高考題的方法——圖象法去解,學生由于熟知二次函數(shù)圖象,求解應該不會有太大的問題。在這個過程中,教師要啟發(fā)引導學生注意對比兩題的異同,組織引導學生展開交流討論,探討第(2)題能不能先把二次項系數(shù)化正以后再構(gòu)造函數(shù)畫圖求解。然后達成共識,如果二次項系數(shù)為負數(shù)時,先做等價轉(zhuǎn)化,把二次項系數(shù)化為正數(shù)再解,課本19頁例3、例4作為題組(二),繼續(xù)讓學生用上面的圖象法,由學生自己求解,這時我及時提示學生注意這兩題與題組(一)中兩題的不同(例1、例2對應方程都有兩個不等實根,例3對應方程有兩相等實根,例4對應方程無實根)。兩個題組的練習之后,可以尋求解二次不等式的一般規(guī)律。
3.啟發(fā)引導——形成結(jié)論。前面兩個題組的四個小題,基本涵蓋了一般一元二次不等式解的各種情況,進一步啟發(fā)引導學生將特殊、具體題目的結(jié)論做一般化總結(jié),與學生一起就 △>0,△<0,△=0 c="">0或ax2+bx+c<0 a="">0)的解的情況應該水到渠成。至此,學生可以感受到,解二次不等式只須①將二次項系數(shù)化為正數(shù),②求解二次方程 ax2+bx+c=0 的根。③根據(jù)①后的二次不等式的符號寫出解集即可,必要時也可以結(jié)合圖象寫解集。這樣我們就得到了二次不等式的另外一種解法(可稱為"三步曲"法)。
4.訓練小結(jié)——鞏固深化。為了鞏固和加深二次不等式的兩種解法,接下來及時組織學生進行課堂練習,完成課本21頁練習1-4題。本環(huán)節(jié)請不同層次的學生在黑板上書寫解題過程,之后師生共同糾正問題,規(guī)范解題過程的書寫。
5.延伸拓寬——提高能力。課堂教學既要面向全體學生,又應關(guān)注學生的個體差異。體現(xiàn)分類推進,分層教學的原則。為此,我又設計了一個提高練習題組,共有三道備選題目,以供程度較好學有余力的學生能夠更好的展示自己的解題能力,取得更進一步的提高。
四。課堂意外預案:
新課程理念下的教學更多的關(guān)注學生自主探究、關(guān)注學生的個性發(fā)展,鼓勵學生勇于提出問題,培養(yǎng)學生思維的批評性。在課堂上學生往往會提出讓老師感到"意外"的問題,我在平時的教學中重視對"課堂意外預案"的探索和思考,備課時盡量設想課堂中可能會出現(xiàn)的各種情況,做到有備無患,以免在課堂中學生提出讓自己出乎意料的問題,使自己陷入被動尷尬境地。結(jié)合以往經(jīng)驗,在本節(jié)課,我提出兩個"意外預案".
1.學生在做課本練習1(x+2)(x-3)>0 時,可能會問到轉(zhuǎn)化為不等式組{ 或{ 求解對不對。學生提出的問題,想法非常好,應給予肯定和鼓勵,這與下節(jié)簡單分式不等式和高次不等式的解法有關(guān),是解不等式的另一種解法——等價轉(zhuǎn)化法,不在本節(jié)課之列。
2.根據(jù)以往的經(jīng)驗,在解(x-1)(x+2)>1一類的不等式的時候,由于受方程(x+1)(x+2)=0 可轉(zhuǎn)化為x-1=0或x+2=0求解的影響,有可能會出現(xiàn)將不等式轉(zhuǎn)化為不等式組{ 來求解的錯誤做法,教師要關(guān)注學生,及時發(fā)現(xiàn)問題并給予糾正,指出上面的轉(zhuǎn)化不是等價轉(zhuǎn)化。
以上是我對本節(jié)課的一些粗淺的認識和構(gòu)想,如有不妥之處,懇請各位專家、各位同仁批評指正。謝謝大家!
高中數(shù)學說課稿12
各位評委老師好:今天我說課的題目是
是必修章第節(jié)的內(nèi)容,我將以新課程標準的理念指導本節(jié)課的教學,從教材分析,教法學法,教學過程,教學評價四個方面加以說明。
一、 教材分析
是在學習了基礎(chǔ)上進一步研究 并為后面學習 做準備,在整個
高中數(shù)學中起著承上啟下的作用,因此本節(jié)內(nèi)容十分重要。
根據(jù)新課標要求和學生實際水平我制定以下教學目標
1、 知識能力目標:使學生理解掌握
2、 過程方法目標:通過觀察歸納抽象概括使學生構(gòu)建領(lǐng)悟 數(shù)學思想,培養(yǎng) 能力
3、 情感態(tài)度價值觀目標:通過學習體驗數(shù)學的科學價值和應用價值,培養(yǎng)善于
觀察勇于思考的學習習慣和嚴謹 的科學態(tài)度
根據(jù)教學目標、本節(jié)特點和學生實際情況本節(jié)重點是 ,由于學生對 缺少感性認識,所以本節(jié)課的重點是
二、教法學法
根據(jù)教師主導地位和學生主體地位相統(tǒng)一的規(guī)律,我采用引導發(fā)現(xiàn)法為本節(jié)課的主要教學方法并借助多媒體為輔助手段。在教師點撥下,學生自主探索、合作交流來尋求解決問題的方法。
三、 教學過程
四、 教學程序及設想
1、由……引入:
把教學內(nèi)容轉(zhuǎn)化為具有潛在意義的問題,讓學生產(chǎn)生強烈的問題意識,使學生的整個學習過程成為“猜想”,繼而緊張地沉思,期待尋找理由和證明過程。 在實際情況下進行學習,可以使學生利用已有知識與經(jīng)驗,同化和索引出當前學習的新知識,這樣獲取的知識,不但易于保持,而且易于遷移到陌生的問題情境中。
對于本題:……
2、由實例得出本課新的知識點是:……
3、講解例題。
我們在講解例題時,不僅在于怎樣解,更在于為什么這樣解,而及時對解題方法和規(guī)律進行概括,有利于發(fā)展學生的思維能力。在題中:
4、能力訓練。
課后練習……
使學生能鞏固羨慕自覺運用所學知識與解題思想方法。
5、總結(jié)結(jié)論,強化認識。
知識性內(nèi)容的小結(jié),可把課堂教學傳授的知識盡快化為學生的素質(zhì);數(shù)學思想方法的小結(jié),可使學生更深刻地理解數(shù)學思想方法在解題中的地位和應用,并且逐漸培養(yǎng)學生的良好的個性品質(zhì)目標。
6、變式延伸,進行重構(gòu)。
重視課本例題,適當對題目進行引申,使例題的作用更加突出,有利于學生對知識的'串聯(lián)、累積、加工,從而達到舉一反三的效果。
五、教學評價
學生學習的學習結(jié)果評價當然重要,但是更重要的是學生學習的過程評價,教師應
當高度重視學生學習過程中的參與度、自信心、團隊精神合作意識數(shù)學能力的發(fā)現(xiàn),以及學習的興趣和成就感。
高中數(shù)學說課稿13
尊敬的各位專家、評委:
下午好!
我的抽簽序號是____,今天我說課的課題是《_______》第__課時。 我嘗試利用新課標的理念來指導教學,對于本節(jié)課,我將以“教什么,怎么教,為什么這樣教”為思路,從教材分析、目標分析、教法學法分析、教學過程分析和評價分析五個方面來談談我對教材的理解和教學的設計,敬請各位專家、評委批評指正。
一、教材分析
(一)地位與作用
數(shù)列是高中數(shù)學重要內(nèi)容之一,它不僅有著廣泛的實際應用,而且起著承前啟后的作用。一方面數(shù)列作為一種特殊的函數(shù)與函數(shù)思想密不可分;另一方面學習數(shù)列也為進一步學習數(shù)列的極限等內(nèi)容做好準備。而等差數(shù)列是在學生學習了數(shù)列的有關(guān)概念和給出數(shù)列的兩種方法——通項公式和遞推公式的基礎(chǔ)上,對數(shù)列的知識進一步深入和拓廣。同時等差數(shù)列也為今后學習等比數(shù)列提供了學習對比的依據(jù)。
。ǘ⿲W情分析
(1)學生已熟練掌握_________________。
。2)學生的知識經(jīng)驗較為豐富,具備了教強的抽象思維能力和演繹推理能力。
(3)學生思維活潑,積極性高,已初步形成對數(shù)學問題的合作探究能力。
(4) 學生層次參次不齊,個體差異比較明顯。
二、目標分析
新課標指出“三維目標”是一個密切聯(lián)系的有機整體,應該以獲得知識與技能的過程,同時成為學會學習和正確價值觀。這要求我們在教學中以知識技能的培養(yǎng)為主線,透情感態(tài)度與價值觀,并把這兩者充分體現(xiàn)在教學過程中,新課標指出教學的主體是學生,因此目標的制定和設計必須從學生的角度出發(fā),根據(jù)____在教材內(nèi)容中的地位與作用,結(jié)合學情分析,本節(jié)課教學應實現(xiàn)如下教學目標:
。ㄒ唬┙虒W目標
(1)知識與技能
使學生理解函數(shù)單調(diào)性的概念,初步掌握判別函數(shù)單調(diào)性的方法;。
。2)過程與方法
引導學生通過觀察、歸納、抽象、概括,自主建構(gòu)單調(diào)增函數(shù)、單調(diào)減函數(shù)等概念;能運用函數(shù)單調(diào)性概念解決簡單的問題;使學生領(lǐng)會數(shù)形結(jié)合的數(shù)學思想方法,培養(yǎng)學生發(fā)現(xiàn)問題、分析問題、解決問題的能力。
。3)情感態(tài)度與價值觀
在函數(shù)單調(diào)性的學習過程中,使學生體驗數(shù)學的科學價值和應用價值,培養(yǎng)學生善于觀察、勇于探索的良好習慣和嚴謹?shù)目茖W態(tài)度。
。ǘ┲攸c難點
本節(jié)課的教學重點是________________________,教學難點是_____________________。
三、教法、學法分析
。ㄒ唬┙谭
基于本節(jié)課的內(nèi)容特點和高二學生的年齡特征,按照臨沂市高中數(shù)學“三五四”課堂教學策略,采用探究――體驗教學法為主來完成教學,為了實現(xiàn)本節(jié)課的教學目標,在教法上我采取了:
1、通過學生熟悉的實際生活問題引入課題,為概念學習創(chuàng)設情境,拉近數(shù)學與現(xiàn)實的距離,激發(fā)學生求知欲,調(diào)動學生主體參與的積極性.
2、在形成概念的過程中,緊扣概念中的關(guān)鍵語句,通過學生的主體參與,正確地形成概念.
3、在鼓勵學生主體參與的同時,不可忽視教師的主導作用,要教會學生清晰的思維、嚴謹?shù)耐评,并順利地完成書面表達.
(二)學法
在學法上我重視了:
1、讓學生利用圖形直觀啟迪思維,并通過正、反例的.構(gòu)造,來完成從感性認識到理性思維的質(zhì)的飛躍。
2、讓學生從問題中質(zhì)疑、嘗試、歸納、總結(jié)、運用,培養(yǎng)學生發(fā)現(xiàn)問題、研究問題和分析解決問題的能力。
四、教學過程分析
。ㄒ唬┙虒W過程設計
教學是一個教師的“導”,學生的“學”以及教學過程中的“悟”構(gòu)成的和諧整體。教師的“導”也就是教師啟發(fā)、誘導、激勵、評價等為學生的學習搭建支架,把學習的任務轉(zhuǎn)移給學生,學生就是接受任務,探究問題、完成任務。如果在教學過程中把“教與學”完美的結(jié)合也就是以“問題”為核心,通過對知識的發(fā)生、發(fā)展和運用過程的演繹、解釋和探究來組織和推動教學。
。1)創(chuàng)設情境,提出問題。
新課標指出:“應該讓學生在具體生動的情境中學習數(shù)學”。在本節(jié)課的教學中,從我們熟悉的生活情境中提出問題,問題的設計改變了傳統(tǒng)目的明確的設計方式,給學生最大的思考空間,充分體現(xiàn)學生主體地位。
(2)引導探究,建構(gòu)概念。
數(shù)學概念的形成來自解決實際問題和數(shù)學自身發(fā)展的需要.但概念的高度抽象,造成了難懂、難教和難學,這就需要讓學生置身于符合自身實際的學習活動中去,從自己的經(jīng)驗和已有的知識基礎(chǔ)出發(fā),經(jīng)歷“數(shù)學化”、“再創(chuàng)造”的活動過程.
(3)自我嘗試,初步應用。
有效的數(shù)學學習過程,不能單純的模仿與記憶,數(shù)學思想的領(lǐng)悟和學習過程更是如此。讓學生在解題過程中親身經(jīng)歷和實踐體驗,師生互動學習,生生合作交流,共同探究.
。4)當堂訓練,鞏固深化。
通過學生的主體參與,使學生深切體會到本節(jié)課的主要內(nèi)容和思想方法,從而實現(xiàn)對知識識的再次深化。
(5)小結(jié)歸納,回顧反思。
小結(jié)歸納不僅是對知識的簡單回顧,還要發(fā)揮學生的主體地位,從知識、方法、經(jīng)驗等方面進行總結(jié)。我設計了三個問題:(1)通過本節(jié)課的學習,你學到了哪些知識?(2)通過本節(jié)課的學習,你最大的體驗是什么?(3)通過本節(jié)課的學習,你掌握了哪些技能?
。ǘ┳鳂I(yè)設計
作業(yè)分為必做題和選做題,必做題對本節(jié)課學生知識水平的反饋,選做題是對本
節(jié)課內(nèi)容的延伸與,注重知識的延伸與連貫,強調(diào)學以致用。通過作業(yè)設置,使不同層次的學生都可以獲得成功的喜悅,看到自己的潛能,從而激發(fā)學生飽滿的學習興趣,促進學生自主發(fā)展、合作探究的學習氛圍的形成.
我設計了以下作業(yè):
。1)必做題
。2)選做題
(三)板書設計
板書要基本體現(xiàn)整堂課的內(nèi)容與方法,體現(xiàn)課堂進程,能簡明扼要反映知識結(jié)構(gòu)及其相互聯(lián)系;能指導教師的教學進程、引導學生探索知識;通過使用幻燈片輔助板書,節(jié)省課堂時間,使課堂進程更加連貫。
五、評價分析
學生學習的結(jié)果評價當然重要,但是更重要的是學生學習的過程評價。我采用及時點評、延時點評與學生互評相結(jié)合,全面考查學生在知識、思想、能力等方面的發(fā)展情況,在質(zhì)疑探究的過程中,評價學生是否有積極的情感態(tài)度和頑強的理性精神,在概念反思過程中評價學生的歸納猜想能力是否得到發(fā)展,通過鞏固練習考查學生對____是否有一個完整的集訓,并進行及時的調(diào)整和補充。 以上就是我對本節(jié)課的理解和設計,敬請各位專家、評委批評指正。 謝謝!
高中數(shù)學說課稿14
一、說設計理念
《數(shù)學課程標準》指出要讓學生感受生活中處處有數(shù)學,用數(shù)學知識解決生活中的實際問題。
基于這一理念,我在教學過程中力求聯(lián)系學生生活實際和已有的知識經(jīng)驗,從學生感興趣的素材,設計新穎的導入與例題教學,給數(shù)學課富予新的生命力。課堂中力求構(gòu)建一種自主探究、和諧合作的教學氛圍,讓學生經(jīng)歷知識的探究過程,培養(yǎng)學生感受生活中的數(shù)學和用數(shù)學知識解決生活問題的能力,體驗數(shù)學的應用價值。
二、教材分析:
(一)教材的地位和作用
有關(guān)統(tǒng)計圖的認識,小學階段主要認識條形統(tǒng)計圖、折線統(tǒng)計圖和扇形統(tǒng)計圖?紤]到扇形統(tǒng)計圖在日常生活中的廣泛應用,《標準》把它作為必學內(nèi)容安排在本單元。本單元是在前面學習了條形統(tǒng)計圖和折線統(tǒng)計圖的特點和作用的基礎(chǔ)上進行教學的。主要通過熟悉的事例使學生體會到扇形統(tǒng)計圖的實用價值。
。ǘ┙虒W目標
1、聯(lián)系生活情境了解扇形統(tǒng)計圖的.特點和作用
2、能讀懂扇形統(tǒng)計圖,從中獲取有效的信息。
3、讓學生在觀察、比較、討論和交流中體會扇形統(tǒng)計圖反映的是整體和部分的關(guān)系。
。ㄈ┙虒W重點:
1、能讀懂扇形統(tǒng)計圖,理解扇形統(tǒng)計圖的特點和作用,并能從中獲取有效信息。
2、認識折線統(tǒng)計圖,了解折線統(tǒng)計圖的特點。
。ㄋ模┙虒W難點:
1、能從扇形統(tǒng)計圖中獲得有用信息,并做出合理推斷。
2、能根據(jù)統(tǒng)計圖和數(shù)據(jù)進行數(shù)據(jù)變化趨勢的分析。
二、學情分析
本單元的教學是在學生已有統(tǒng)計經(jīng)驗的基礎(chǔ)上,學習新知的。六年級的學生已經(jīng)學習了條形統(tǒng)計圖和折線統(tǒng)計圖,知道他們的特點,并具有一定的概括、分析能力,在此基礎(chǔ)上,通過新舊知識對比,自然生成新知識點。
三、設計理念和教法分析
1、本堂課力爭做到由“關(guān)注知識”轉(zhuǎn)向“關(guān)注學生”,由“傳授知識”轉(zhuǎn)向“引導探索”,“教師是組織者、領(lǐng)導者!睂⒄n堂設置問題給學生,讓學生自己獲取信息、分析信息,自主探索、合作交流,參與知識的構(gòu)建。
2、運用探究法。探究學習的內(nèi)容以問題的形式出現(xiàn)在教師的引導下,學生自主探究,讓學生在課堂上多活動、多思考,自主構(gòu)建知識體系。引導學生獲取信息并合作交流。
四、說學法
《數(shù)學課程標準》指出有效的數(shù)學學習不能單純的依賴模仿和記憶,動手操作、自主探索與合作交流是學生學習數(shù)學的重要方式。教學時,我通過學生感興趣的話題引入,引導學生關(guān)注身邊的數(shù)學,使學生體會到觀察、概括、想象、遷移等數(shù)學學習方法,在師生互動中讓每個學生都動口,動手,動腦。培養(yǎng)學生學習的主動性和積極性。
五、說教學程序
本課分成創(chuàng)設情境,感知特點——分析數(shù)據(jù),理解特征——嘗試制圖,看圖分析——實踐應用,全課總結(jié)四環(huán)節(jié)。
六、說教學過程
。ㄒ唬⿵土曇
1、復習舊知
提問:我們學習過哪些統(tǒng)計方法?其中條形統(tǒng)計圖和折線統(tǒng)計圖各有什么特點?
2、引入新課
(二)自主探索,學習新知
新知識教學分二步教學:第一步整體感知,看懂統(tǒng)計圖,理解特征,這是本節(jié)課的重點。在教學中,以知識遷移的方式建立新舊知識之間的聯(lián)系,放手讓學生獨立思考,互相合作,進一步了解統(tǒng)計圖的特征。
第二步實踐應用環(huán)節(jié)。在教學中,精心地選取了大量的生活素材,使統(tǒng)計知識與生活建立緊密的聯(lián)系。根據(jù)統(tǒng)計圖回答問題,是讓學生運用到剛才學習到的知識來解決生活中的一些問題,并鞏固剛才所學的知識,為學生自己發(fā)現(xiàn)問題、提出問題及自己解決問題提供了較大的空間。同時,讓學生感悟由于數(shù)據(jù)變化帶來的啟示,并能合理地進行推理與判斷
三、課堂總結(jié)
四、布置作業(yè)。
五、板書設計:
高中數(shù)學說課稿15
各位老師:
大家好!
我叫***,來自**。我說課的題目是《簡單隨機抽樣》,內(nèi)容選自于新課程人教A版必修3第二章第一節(jié),課時安排為一個課時。下面我將從教材分析、教學目標分析、教學方法與手段分析、和教學過程分析等四大方面來闡述我對這節(jié)課的分析和設計:
一、教材分析
1.教材所處的地位和作用
"簡單隨機抽樣"是"隨機抽樣"的基礎(chǔ),"隨機抽樣"又是"統(tǒng)計學"的基礎(chǔ),因此,在"統(tǒng)計學"中,"簡單隨機抽樣"是基礎(chǔ)的基礎(chǔ)。在初中學生已學過相關(guān)概念,如"抽樣""總體"、"個體"、"樣本"、"樣本容量"等,具有一定基礎(chǔ),新教材把"統(tǒng)計"這部分內(nèi)容編入必修部分,突出了統(tǒng)計在日常生活中的應用,體現(xiàn)它在中學數(shù)學中的地位,但同時也給學生學習增加了難度。
2教學的重點和難點
重點:掌握簡單隨機抽樣常見的兩種方法(抽簽法、隨機數(shù)表法)
難點:理解簡單隨機抽樣的科學性,以及由此推斷結(jié)論的可靠性
二、教學目標分析
1.知識與技能目標:
正確理解隨機抽樣的概念,掌握抽簽法、隨機數(shù)表法的一般步驟;
2.過程與方法目標:
。1)能夠從現(xiàn)實生活或其他學科中提出具有一定價值的統(tǒng)計問題;
。2)在解決統(tǒng)計問題的過程中,學會用簡單隨機抽樣的方法從總體中抽取樣本。
3.情感,態(tài)度和價值觀目標
通過對現(xiàn)實生活和其他學科中統(tǒng)計問題的提出,體會數(shù)學知識與現(xiàn)實世界及各學科知識之間的聯(lián)系,認識數(shù)學的重要性
三、教學方法與手段分析
為了充分讓學生自己分析、判斷、自主學習、合作交流。因此,我采用討論發(fā)現(xiàn)法教學,并對學生滲透"從特殊到一般"的`學習方法,由于本節(jié)課內(nèi)容實例多,信息容量大,文字多,我采用多媒體輔助教學,節(jié)省時間,提高教學效率,另外采用這種形式也可強化學生感觀刺激,也能大大提高學生的學習興趣。
四、教學過程分析
。ㄒ唬┰O置情境,提出問題
例1:請問下列調(diào)查是"普查"還是"抽樣"調(diào)查?
A、一鍋水餃的味道B、旅客上飛機前的安全檢查
c、一批炮彈的殺傷半徑D、一批彩電的質(zhì)量情況
E、美國總統(tǒng)的民意支持率
學生討論后,教師指出生活中處處有"抽樣"
「設計意圖」生活中處處有"抽樣"調(diào)查,明確學習"抽樣"的必要性。
(二)主動探究,構(gòu)建新知
例2:語文老師為了了解某班同學對某首詩的背誦情況,應采用下列哪種抽查方式?為什么?
A、在班級12名班委名單中逐個抽查5位同學進行背誦
B、在班級45名同學中逐一抽查10位同學進行背誦
先讓學生分析、選擇B后,師生一起歸納其特征:
。1)不放回逐一抽樣,
。2)抽樣有代表性(個體被抽到可能性相等),學生體驗B種抽樣的科學性后,教師指出這是簡單隨機抽樣,并復習初中講過的有關(guān)概念,最后教師補充板書課題--(簡單隨機)抽樣及其定義。
「設計意圖」例2從正面分析簡單隨機抽樣的科學性、公平性,突出"等可能性"特征。這是突破教學難點的重要環(huán)節(jié)之一。
例3我們班有44名學生,現(xiàn)從中抽出5名學生去參加學生座談會,要使每名學生的機會均等,我們應該怎么做?談談你的想法。
先讓學生獨立思考,然后分小組合作學習,最后各小組推薦一位同學發(fā)言,最后師生一起歸納"抽簽法"步驟:
。1)編號制簽
。2)攪拌均勻
。3)逐個不放回抽取n次。教師板書上面步驟。
「設計意圖」在自主探究,合作交流中構(gòu)建新知,體驗"抽簽法"的公平性,從而突破難點,突出重點。
請一位同學說說例2采用"抽簽法"的實施步驟。
「設計意圖」
1、反饋練習,落實知識點,突出重點。
2、體會"抽簽法"具有"簡單、易行"的優(yōu)點。
〈屏幕出示〉
例4、假設我們要考察某公司生產(chǎn)的500克袋裝牛奶的質(zhì)量是否達標,現(xiàn)從800袋牛奶中抽取60袋進行檢驗
提問:這道題適合用抽簽法嗎?
讓學生進行思考,分析抽簽法的局限性,從而引入隨機數(shù)表法。教師出示一份隨機數(shù)表,并介紹隨機數(shù)表,強調(diào)數(shù)表上的數(shù)字都是隨機的,各個數(shù)字出現(xiàn)的可能性均等,結(jié)合上例讓學生討論隨機數(shù)表法的步驟,最后師生一起歸納步驟:
。1)編號
。2)在隨機數(shù)表上確定起始位置
。3)取數(shù)。教師板書上面步驟。
請一位同學說說例2采用"隨機數(shù)表法"的實施步驟。
「設計意圖」
1、體會隨機數(shù)表法的科學性
2、體會隨機數(shù)表法的優(yōu)越性:避免制簽、攪拌。
3、反饋練習,落實知識點,突出重點。
、缯n堂小結(jié):
1.簡單隨機抽樣及其兩種方法
2.兩種方法的操作步驟
。ú捎脝柎鹦问剑
「設計意圖」通過小結(jié)使學生們對知識有一個系統(tǒng)的認識,突出重點,抓住關(guān)鍵,培養(yǎng)概括能力。
㈣布置作業(yè)
課本練習2、3
[設計意圖]課后作業(yè)的布置是為了檢驗學生對本節(jié)課內(nèi)容的理解和運用程度以及實際接受情況,并促使學生進一步鞏固和掌握所學內(nèi)容。
【高中數(shù)學說課稿】相關(guān)文章:
高中數(shù)學向量說課稿09-09
高中數(shù)學說課稿06-12
高中數(shù)學說課稿11-14
高中數(shù)學說課稿范文06-27
高中數(shù)學說課稿優(yōu)秀11-14
關(guān)于高中數(shù)學說課稿11-26
高中數(shù)學說課稿【熱門】01-10
高中數(shù)學說課稿【熱】01-07
高中數(shù)學說課稿【薦】01-07