高中數(shù)學(xué)教案模板
作為一名人民教師,時(shí)常需要編寫(xiě)教案,教案是教材及大綱與課堂教學(xué)的紐帶和橋梁。寫(xiě)教案需要注意哪些格式呢?下面是小編整理的高中數(shù)學(xué)教案模板,歡迎大家分享。
高中數(shù)學(xué)教案模板1
一、教學(xué)目標(biāo)
1、在初中學(xué)過(guò)原命題、逆命題知識(shí)的基礎(chǔ)上,初步理解四種命題。
2、給一個(gè)比較簡(jiǎn)單的命題(原命題),可以寫(xiě)出它的逆命題、否命題和逆否命題。
3、通過(guò)對(duì)四種命題之間關(guān)系的學(xué)習(xí),培養(yǎng)學(xué)生邏輯推理能力
4、初步培養(yǎng)學(xué)生反證法的數(shù)學(xué)思維。
二、教學(xué)分析
重點(diǎn):四種命題;難點(diǎn):四種命題的關(guān)系
1、本小節(jié)首先從初中數(shù)學(xué)的命題知識(shí),給出四種命題的概念,接著,講述四種命題的關(guān)系,最后,在初中的基礎(chǔ)上,結(jié)合四種命題的知識(shí),進(jìn)一步講解反證法。
2、教學(xué)時(shí),要注意控制教學(xué)要求。本小節(jié)的內(nèi)容,只涉及比較簡(jiǎn)單的命題,不研究含有邏輯聯(lián)結(jié)詞“或”、“且”、“非”的命題的逆命題、否命題和逆否命題
3、“若p則q”形式的命題,也是一種復(fù)合命題,并且,其中的p與q,可以是命題也可以是開(kāi)語(yǔ)句,例如,命題“若,則x,y全為0”,其中的p與q,就是開(kāi)語(yǔ)句。對(duì)學(xué)生,只要求能分清命題“若p則q”中的條件與結(jié)論就可以了,不必考慮p與q是命題,還是開(kāi)語(yǔ)句。
三、教學(xué)手段和方法(演示教學(xué)法和循序漸進(jìn)導(dǎo)入法)
1、以故事形式入題
2、多媒體演示
四、教學(xué)過(guò)程
。ㄒ唬┮耄阂粋(gè)生活中有趣的與命題有關(guān)的笑話:某人要請(qǐng)甲乙丙丁吃飯,時(shí)間到了,只有甲乙丙三人按時(shí)赴約。丁卻打電話說(shuō)“有事不能參加”主人聽(tīng)了隨口說(shuō)了句“該來(lái)的沒(méi)來(lái)”甲聽(tīng)了臉色一沉,一聲不吭的走了,主人愣了一下又說(shuō)了一句“哎,不該走的走了”乙聽(tīng)了大怒,拂袖即去。主人這時(shí)還沒(méi)意識(shí)到又順口說(shuō)了一句:“俺說(shuō)的又不是你”。這時(shí)丙怒火中燒不辭而別。四個(gè)客人沒(méi)來(lái)的沒(méi)來(lái),來(lái)的又走了。主人請(qǐng)客不成還得罪了三家。大家肯定都覺(jué)得這個(gè)人不會(huì)說(shuō)話,但是你想過(guò)這里面所蘊(yùn)涵的數(shù)學(xué)思想嗎?通過(guò)這節(jié)課的學(xué)習(xí)我們就能揭開(kāi)它的廬山真面,學(xué)生的興奮點(diǎn)被緊緊抓住,躍躍欲試!
設(shè)計(jì)意圖:創(chuàng)設(shè)情景,激發(fā)學(xué)生學(xué)習(xí)興趣
。ǘ⿵(fù)習(xí)提問(wèn):
1、命題“同位角相等,兩直線平行”的條件與結(jié)論各是什么?
2、把“同位角相等,兩直線平行”看作原命題,它的逆命題是什么?
3、原命題真,逆命題一定真嗎?
“同位角相等,兩直線平行”這個(gè)原命題真,逆命題也真、但“正方形的四條邊相等”的原命題真,逆命題就不真,所以原命題真,逆命題不一定真、
學(xué)生活動(dòng):
口答:(l)若同位角相等,則兩直線平行;(2)若一個(gè)四邊形是正方形,則它的四條邊相等、
設(shè)計(jì)意圖:通過(guò)復(fù)習(xí)舊知識(shí),打下學(xué)習(xí)否命題、逆否命題的基礎(chǔ)、
。ㄈ┬抡n講解:
1、命題“同位角相等,兩直線平行”的條件是“同位角相等”,結(jié)論是“兩直線平行”;如果把“同位角相等,兩直線平行”看作原命題,它的逆命題就是“兩直線平行,同位角相等”。也就是說(shuō),把原命題的結(jié)論作為條件,條件作為結(jié)論,得到的命題就叫做原命題的逆命題。
2、把命題“同位角相等,兩直線平行”的條件與結(jié)論同時(shí)否定,就得到新命題“同位角不相等,兩直線不平行”,這個(gè)新命題就叫做原命題的否命題。
3、把命題“同位角相等,兩直線平行”的`條件與結(jié)論互相交換并同時(shí)否定,就得到新命題“兩直線不平行,同位角不相等”,這個(gè)新命題就叫做原命題的逆否命題。
(四)組織討論:
讓學(xué)生歸納什么是否命題,什么是逆否命題。
例1及例2
。ㄎ澹┱n堂探究:“兩條直線不平行,則同位角不相等”是否真?“若一個(gè)四邊形的四條邊不相等,則不是正方形”是否真?若原命題真,逆否命題是否也真?
學(xué)生活動(dòng):
討論后回答
這兩個(gè)逆否命題都真、
原命題真,逆否命題也真
引導(dǎo)學(xué)生討論原命題的真假與其他三種命題的真
假有什么關(guān)系?舉例加以說(shuō)明,同學(xué)們踴躍發(fā)言。
(六)課堂小結(jié):
1、一般地,用p和q分別表示原命題的條件和結(jié)論,用¬p和¬q分別表示p和q否定時(shí),四種命題的形式就是:
原命題若p則q;
逆命題若q則p;(交換原命題的條件和結(jié)論)
否命題,若¬p則¬q;(同時(shí)否定原命題的條件和結(jié)論)
逆否命題若¬q則¬p。(交換原命題的條件和結(jié)論,并且同時(shí)否定)
2、四種命題的關(guān)系
。1)、原命題為真,它的逆命題不一定為真、
(2)、原命題為真,它的否命題不一定為真、
(3)、原命題為真,它的逆否命題一定為真
(七)回扣引入
分析引入中的笑話,先討論,后總結(jié):現(xiàn)在我們來(lái)分析一下主人說(shuō)的四句話:
第一句:“該來(lái)的沒(méi)來(lái)”
其逆否命題是“不該來(lái)的來(lái)了”,甲認(rèn)為自己是不該來(lái)的,所以甲走了。
第二句:“不該走的走了”,其逆否命題為“該走的沒(méi)走”,乙認(rèn)為自己該走,所以乙也走了。
第三句:“俺說(shuō)的不是你(指乙)”其值為真其非命題:“俺說(shuō)的是你”為假,則說(shuō)的是他(指丙)為真。所以,丙認(rèn)為說(shuō)的是自己,所以丙也走了。
同學(xué)們,生活中處處是數(shù)學(xué),期待我們善于發(fā)現(xiàn)的眼睛
五、作業(yè)
1、設(shè)原命題是“若斷它們的真假、,則”,寫(xiě)出它的逆命題、否命題與逆否命題,并分別判
2、設(shè)原命題是“當(dāng)時(shí),若,則”,寫(xiě)出它的逆命題、否定命與逆否命題,并分別判斷它們的真假、
高中數(shù)學(xué)教案模板2
教學(xué)目標(biāo):
(1)了解集合、元素的概念,體會(huì)集合中元素的三個(gè)特征;
。2)理解元素與集合的"屬于"和"不屬于"關(guān)系;
。3)掌握常用數(shù)集及其記法;
教學(xué)重點(diǎn):
掌握集合的基本概念;
教學(xué)難點(diǎn):
元素與集合的關(guān)系;
教學(xué)過(guò)程:
一、引入課題
軍訓(xùn)前學(xué)校通知:8月15日8點(diǎn),高一年級(jí)在體育館集合進(jìn)行軍訓(xùn)動(dòng)員;試問(wèn)這個(gè)通知的對(duì)象是全體的高一學(xué)生還是個(gè)別學(xué)生?
在這里,集合是我們常用的一個(gè)詞語(yǔ),我們感興趣的是問(wèn)題中某些特定(是高一而不是高二、高三)對(duì)象的總體,而不是個(gè)別的對(duì)象,為此,我們將學(xué)習(xí)一個(gè)新的概念——集合(宣布課題),即是一些研究對(duì)象的總體。
閱讀課本P2—P3內(nèi)容
二、新課教學(xué)
。ㄒ唬┘系挠嘘P(guān)概念
1、集合理論創(chuàng)始人康托爾稱(chēng)集合為一些確定的、不同的東西的全體,人們能意識(shí)到這些東西,并且能判斷一個(gè)給定的東西是否屬于這個(gè)總體。
2、一般地,我們把研究對(duì)象統(tǒng)稱(chēng)為元素(element),一些元素組成的總體叫集合(set),也簡(jiǎn)稱(chēng)集。
3、思考1:判斷以下元素的全體是否組成集合,并說(shuō)明理由:
。1)大于3小于11的偶數(shù);
。2)我國(guó)的小河流;
。3)非負(fù)奇數(shù);
。4)方程的解;
。5)某校20xx級(jí)新生;
。6)血壓很高的人;
(7)著名的數(shù)學(xué)家;
(8)平面直角坐標(biāo)系內(nèi)所有第三象限的點(diǎn)
。9)全班成績(jī)好的學(xué)生。
對(duì)學(xué)生的解答予以討論、點(diǎn)評(píng),進(jìn)而講解下面的問(wèn)題。
4、關(guān)于集合的元素的特征
。1)確定性:設(shè)A是一個(gè)給定的集合,x是某一個(gè)具體對(duì)象,則或者是A的元素,或者不是A的元素,兩種情況必有一種且只有一種成立。
(2)互異性:一個(gè)給定集合中的元素,指屬于這個(gè)集合的互不相同的'個(gè)體(對(duì)象),因此,同一集合中不應(yīng)重復(fù)出現(xiàn)同一元素。
。3)無(wú)序性:給定一個(gè)集合與集合里面元素的順序無(wú)關(guān)。
(4)集合相等:構(gòu)成兩個(gè)集合的元素完全一樣。
5、元素與集合的關(guān)系;
。1)如果a是集合A的元素,就說(shuō)a屬于(belong to)A,記作:a∈A
。2)如果a不是集合A的元素,就說(shuō)a不屬于(not belong to)A,記作:aA
例如,我們A表示"1~20以?xún)?nèi)的所有質(zhì)數(shù)"組成的集合,則有3∈A
4A,等等。
6、集合與元素的字母表示:集合通常用大寫(xiě)的拉丁字母A,B,C、、、表示,集合的元素用小寫(xiě)的拉丁字母a,b,c,、、、表示。
7、常用的數(shù)集及記法:
非負(fù)整數(shù)集(或自然數(shù)集),記作N;
正整數(shù)集,記作N或N+;
整數(shù)集,記作Z;
有理數(shù)集,記作Q;
實(shí)數(shù)集,記作R;
。ǘ├}講解:
例1、用"∈"或""符號(hào)填空:
。1)8 N;(2)0 N;
。3)—3 Z;(4)Q;
(5)設(shè)A為所有亞洲國(guó)家組成的集合,則中國(guó) A,美國(guó)A,印度A,英國(guó)A。
例2、已知集合P的元素為,若3∈P且—1P,求實(shí)數(shù)m的值。
。ㄈ┱n堂練習(xí):
課本P5練習(xí)1;
歸納小結(jié):
本節(jié)課從實(shí)例入手,非常自然貼切地引出集合與集合的概念,并且結(jié)合實(shí)例對(duì)集合的概念作了說(shuō)明,然后介紹了常用集合及其記法。
作業(yè)布置:
1、習(xí)題1、1,第1— 2題;
2、預(yù)習(xí)集合的表示方法。
高中數(shù)學(xué)教案模板3
教學(xué)目標(biāo):
1、理解流程圖的選擇結(jié)構(gòu)這種基本邏輯結(jié)構(gòu)、
2、能識(shí)別和理解簡(jiǎn)單的框圖的功能、
3、能運(yùn)用三種基本邏輯結(jié)構(gòu)設(shè)計(jì)流程圖以解決簡(jiǎn)單的問(wèn)題、
教學(xué)方法:
1、通過(guò)模仿、操作、探索,經(jīng)歷設(shè)計(jì)流程圖表達(dá)求解問(wèn)題的過(guò)程,加深對(duì)流程圖的感知、
2、在具體問(wèn)題的'解決過(guò)程中,掌握基本的流程圖的畫(huà)法和流程圖的三種基本邏輯結(jié)構(gòu)、
教學(xué)過(guò)程:
一、問(wèn)題情境
1、情境:
某鐵路客運(yùn)部門(mén)規(guī)定甲、乙兩地之間旅客托運(yùn)行李的費(fèi)用為
其中(單位:)為行李的重量、
試給出計(jì)算費(fèi)用(單位:元)的一個(gè)算法,并畫(huà)出流程圖、
二、學(xué)生活動(dòng)
學(xué)生討論,教師引導(dǎo)學(xué)生進(jìn)行表達(dá)、
解算法為:
輸入行李的重量;
如果,那么,否則;
輸出行李的重量和運(yùn)費(fèi)、
上述算法可以用流程圖表示為:
教師邊講解邊畫(huà)出第10頁(yè)圖1—2—6、
在上述計(jì)費(fèi)過(guò)程中,第二步進(jìn)行了判斷、
三、建構(gòu)數(shù)學(xué)
1、選擇結(jié)構(gòu)的概念:
。1)先根據(jù)條件作出判斷,再?zèng)Q定執(zhí)行哪一種
。2)操作的結(jié)構(gòu)稱(chēng)為選擇結(jié)構(gòu)、
如圖:虛線框內(nèi)是一個(gè)選擇結(jié)構(gòu),它包含一個(gè)判斷框,當(dāng)條件成立(或稱(chēng)條件為“真”)時(shí)執(zhí)行,否則執(zhí)行、
2、說(shuō)明:
(1)有些問(wèn)題需要按給定的條件進(jìn)行分析、比較和判斷,并按判斷的不同情況進(jìn)行不同的操作,這類(lèi)問(wèn)題的實(shí)現(xiàn)就要用到選擇結(jié)構(gòu)的設(shè)計(jì);
。2)選擇結(jié)構(gòu)也稱(chēng)為分支結(jié)構(gòu)或選取結(jié)構(gòu),它要先根據(jù)指定的條件進(jìn)行判斷,再由判斷的結(jié)果決定執(zhí)行兩條分支路徑中的某一條;
。3)在上圖的選擇結(jié)構(gòu)中,只能執(zhí)行和之一,不可能既執(zhí)行,又執(zhí)行,但或兩個(gè)框中可以有一個(gè)是空的,即不執(zhí)行任何操作;
(4)流程圖圖框的形狀要規(guī)范,判斷框必須畫(huà)成菱形,它有一個(gè)進(jìn)入點(diǎn)和兩個(gè)退出點(diǎn)、
3、思考:教材第7頁(yè)圖所示的算法中,哪一步進(jìn)行了判斷?
高中數(shù)學(xué)教案模板4
教學(xué)目標(biāo):
(1)了解坐標(biāo)法和解析幾何的意義,了解解析幾何的基本問(wèn)題.
(2)進(jìn)一步理解曲線的方程和方程的曲線.
(3)初步掌握求曲線方程的方法.
(4)通過(guò)本節(jié)內(nèi)容的教學(xué),培養(yǎng)學(xué)生分析問(wèn)題和轉(zhuǎn)化的能力.
教學(xué)重點(diǎn)、難點(diǎn):求曲線的方程.
教學(xué)用具:計(jì)算機(jī).
教學(xué)方法:啟發(fā)引導(dǎo)法,討論法.
教學(xué)過(guò)程:
【引入】
1.提問(wèn):什么是曲線的方程和方程的曲線.
學(xué)生思考并回答.教師強(qiáng)調(diào).
2.坐標(biāo)法和解析幾何的意義、基本問(wèn)題.
對(duì)于一個(gè)幾何問(wèn)題,在建立坐標(biāo)系的基礎(chǔ)上,用坐標(biāo)表示點(diǎn);用方程表示曲線,通過(guò)研究方程的性質(zhì)間接地來(lái)研究曲線的性質(zhì),這一研究幾何問(wèn)題的方法稱(chēng)為坐標(biāo)法,這門(mén)科學(xué)稱(chēng)為解析幾何.解析幾何的兩大基本問(wèn)題就是:
(1)根據(jù)已知條件,求出表示平面曲線的方程.
(2)通過(guò)方程,研究平面曲線的性質(zhì).
事實(shí)上,在前邊所學(xué)的直線方程的理論中也有這樣兩個(gè)基本問(wèn)題.而且要先研究如何求出曲線方程,再研究如何用方程研究曲線.本節(jié)課就初步研究曲線方程的求法.
【問(wèn)題】
如何根據(jù)已知條件,求出曲線的方程.
【實(shí)例分析】
例1:設(shè)、兩點(diǎn)的坐標(biāo)是、(3,7),求線段的垂直平分線的方程.
首先由學(xué)生分析:根據(jù)直線方程的知識(shí),運(yùn)用點(diǎn)斜式即可解決.
解法一:易求線段的中點(diǎn)坐標(biāo)為(1,3),
由斜率關(guān)系可求得l的斜率為
于是有
即l的方程為
、
分析、引導(dǎo):上述問(wèn)題是我們?cè)缇蛯W(xué)過(guò)的,用點(diǎn)斜式就可解決.可是,你們是否想過(guò)①恰好就是所求的嗎?或者說(shuō)①就是直線的方程?根據(jù)是什么,有證明嗎?
(通過(guò)教師引導(dǎo),是學(xué)生意識(shí)到這是以前沒(méi)有解決的問(wèn)題,應(yīng)該證明,證明的依據(jù)就是定義中的兩條).
證明:(1)曲線上的點(diǎn)的坐標(biāo)都是這個(gè)方程的解.
設(shè)是線段的垂直平分線上任意一點(diǎn),則
即
將上式兩邊平方,整理得
這說(shuō)明點(diǎn)的坐標(biāo)是方程的解.
(2)以這個(gè)方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn).
設(shè)點(diǎn)的坐標(biāo)是方程①的任意一解,則
到、的距離分別為
所以,即點(diǎn)在直線上.
綜合(1)、(2),①是所求直線的方程.
至此,證明完畢.回顧上述內(nèi)容我們會(huì)發(fā)現(xiàn)一個(gè)有趣的現(xiàn)象:在證明(1)曲線上的點(diǎn)的坐標(biāo)都是這個(gè)方程的解中,設(shè)是線段的垂直平分線上任意一點(diǎn),最后得到式子,如果去掉腳標(biāo),這不就是所求方程嗎?可見(jiàn),這個(gè)證明過(guò)程就表明一種求解過(guò)程,下面試試看:
解法二:設(shè)是線段的垂直平分線上任意一點(diǎn),也就是點(diǎn)屬于集合
由兩點(diǎn)間的距離公式,點(diǎn)所適合的條件可表示為
將上式兩邊平方,整理得
果然成功,當(dāng)然也不要忘了證明,即驗(yàn)證兩條是否都滿(mǎn)足.顯然,求解過(guò)程就說(shuō)明第一條是正確的(從這一點(diǎn)看,解法二也比解法一優(yōu)越一些);至于第二條上邊已證.
這樣我們就有兩種求解方程的方法,而且解法二不借助直線方程的理論,又非常自然,還體現(xiàn)了曲線方程定義中點(diǎn)集與對(duì)應(yīng)的思想.因此是個(gè)好方法.
讓我們用這個(gè)方法試解如下問(wèn)題:
例2:點(diǎn)與兩條互相垂直的直線的距離的積是常數(shù)求點(diǎn)的軌跡方程.
分析:這是一個(gè)純粹的幾何問(wèn)題,連坐標(biāo)系都沒(méi)有.所以首先要建立坐標(biāo)系,顯然用已知中兩條互相垂直的直線作坐標(biāo)軸,建立直角坐標(biāo)系.然后仿照例1中的解法進(jìn)行求解.
求解過(guò)程略.
【概括總結(jié)】通過(guò)學(xué)生討論,師生共同總結(jié):
分析上面兩個(gè)例題的求解過(guò)程,我們總結(jié)一下求解曲線方程的大體步驟:
首先應(yīng)有坐標(biāo)系;其次設(shè)曲線上任意一點(diǎn);然后寫(xiě)出表示曲線的點(diǎn)集;再代入坐標(biāo);最后整理出方程,并證明或修正.說(shuō)得更準(zhǔn)確一點(diǎn)就是:
(1)建立適當(dāng)?shù)淖鴺?biāo)系,用有序?qū)崝?shù)對(duì)例如表示曲線上任意一點(diǎn)的坐標(biāo);
(2)寫(xiě)出適合條件的點(diǎn)的集合
;
(3)用坐標(biāo)表示條件,列出方程;
(4)化方程為最簡(jiǎn)形式;
(5)證明以化簡(jiǎn)后的方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn).
一般情況下,求解過(guò)程已表明曲線上的點(diǎn)的坐標(biāo)都是方程的解;如果求解過(guò)程中的.轉(zhuǎn)化都是等價(jià)的,那么逆推回去就說(shuō)明以方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn).所以,通常情況下證明可省略,不過(guò)特殊情況要說(shuō)明.
上述五個(gè)步驟可簡(jiǎn)記為:建系設(shè)點(diǎn);寫(xiě)出集合;列方程;化簡(jiǎn);修正.
下面再看一個(gè)問(wèn)題:
例3:已知一條曲線在軸的上方,它上面的每一點(diǎn)到點(diǎn)的距離減去它到軸的距離的差都是2,求這條曲線的方程.
【動(dòng)畫(huà)演示】用幾何畫(huà)板演示曲線生成的過(guò)程和形狀,在運(yùn)動(dòng)變化的過(guò)程中尋找關(guān)系.
解:設(shè)點(diǎn)是曲線上任意一點(diǎn),軸,垂足是(如圖2),那么點(diǎn)屬于集合
由距離公式,點(diǎn)適合的條件可表示為
、
將①式移項(xiàng)后再兩邊平方,得
化簡(jiǎn)得
由題意,曲線在軸的上方,所以,雖然原點(diǎn)的坐標(biāo)(0,0)是這個(gè)方程的解,但不屬于已知曲線,所以曲線的方程應(yīng)為,它是關(guān)于軸對(duì)稱(chēng)的拋物線,但不包括拋物線的頂點(diǎn),如圖2中所示.
【練習(xí)鞏固】
題目:在正三角形內(nèi)有一動(dòng)點(diǎn),已知到三個(gè)頂點(diǎn)的距離分別為、 、,且有,求點(diǎn)軌跡方程.
分析、略解:首先應(yīng)建立坐標(biāo)系,以正三角形一邊所在的直線為一個(gè)坐標(biāo)軸,這條邊的垂直平分線為另一個(gè)軸,建立直角坐標(biāo)系比較簡(jiǎn)單,如圖3所示.設(shè)、的坐標(biāo)為、,則的坐標(biāo)為,的坐標(biāo)為.
根據(jù)條件,代入坐標(biāo)可得
化簡(jiǎn)得
、
由于題目中要求點(diǎn)在三角形內(nèi),所以,在結(jié)合①式可進(jìn)一步求出、的范圍,最后曲線方程可表示為
【小結(jié)】師生共同總結(jié):
(1)解析幾何研究研究問(wèn)題的方法是什么?
(2)如何求曲線的方程?
(3)請(qǐng)對(duì)求解曲線方程的五個(gè)步驟進(jìn)行評(píng)價(jià).各步驟的作用,哪步重要,哪步應(yīng)注意什么?
【作業(yè)】課本第72頁(yè)練習(xí)1,2,3;
高中數(shù)學(xué)教案模板5
教學(xué)目標(biāo)
。1)正確理解排列的意義。能利用樹(shù)形圖寫(xiě)出簡(jiǎn)單問(wèn)題的所有排列;
。2)了解排列和排列數(shù)的意義,能根據(jù)具體的問(wèn)題,寫(xiě)出符合要求的排列;
。3)掌握排列數(shù)公式,并能根據(jù)具體的問(wèn)題,寫(xiě)出符合要求的排列數(shù);
。4)會(huì)分析與數(shù)字有關(guān)的排列問(wèn)題,培養(yǎng)學(xué)生的抽象能力和邏輯思維能力;
。5)通過(guò)對(duì)排列應(yīng)用問(wèn)題的學(xué)習(xí),讓學(xué)生通過(guò)對(duì)具體事例的觀察、歸納中找出規(guī)律,得出結(jié)論,以培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度。
教學(xué)建議
一、知識(shí)結(jié)構(gòu)
二、重點(diǎn)難點(diǎn)分析
本小節(jié)的重點(diǎn)是排列的定義、排列數(shù)及排列數(shù)的公式,并運(yùn)用這個(gè)公式去解決有關(guān)排列數(shù)的應(yīng)用問(wèn)題。難點(diǎn)是導(dǎo)出排列數(shù)的公式和解有關(guān)排列的應(yīng)用題。突破重點(diǎn)、難點(diǎn)的關(guān)鍵是對(duì)加法原理和乘法原理的掌握和運(yùn)用,并將這兩個(gè)原理的基本思想方法貫穿在解決排列應(yīng)用問(wèn)題當(dāng)中。
從n個(gè)不同元素中任取m(m≤n)個(gè)元素,按照一定的順序排成一列,稱(chēng)為從n個(gè)不同元素中任取m個(gè)元素的一個(gè)排列。因此,兩個(gè)相同排列,當(dāng)且僅當(dāng)他們的元素完全相同,并且元素的排列順序也完全相同。排列數(shù)是指從n個(gè)不同元素中任取m(m≤n)個(gè)元素的所有不同排列的種數(shù),只要弄清相同排列、不同排列,才有可能計(jì)算相應(yīng)的排列數(shù)。排列與排列數(shù)是兩個(gè)概念,前者是具有m個(gè)元素的排列,后者是這種排列的不同種數(shù)。從集合的角度看,從n個(gè)元素的有限集中取出m個(gè)組成的有序集,相當(dāng)于一個(gè)排列,而這種有序集的個(gè)數(shù),就是相應(yīng)的排列數(shù)。
公式推導(dǎo)要注意緊扣乘法原理,借助框圖的直視解釋來(lái)講解。要重點(diǎn)分析好的推導(dǎo)。
排列的應(yīng)用題是本節(jié)教材的難點(diǎn),通過(guò)本節(jié)例題的分析,應(yīng)注意培養(yǎng)學(xué)生解決應(yīng)用問(wèn)題的能力。
在分析應(yīng)用題的解法時(shí),教材上先畫(huà)出框圖,然后分析逐次填入時(shí)的種數(shù),這樣解釋比較直觀,教學(xué)上要充分利用,要求學(xué)生作題時(shí)也應(yīng)盡量采用。
在教學(xué)排列應(yīng)用題時(shí),開(kāi)始應(yīng)要求學(xué)生寫(xiě)解法要有簡(jiǎn)要的文字說(shuō)明,防止單純的只寫(xiě)一個(gè)排列數(shù),這樣可以培養(yǎng)學(xué)生的分析問(wèn)題的能力,在基本掌握之后,可以逐漸地不作這方面的要求。
三、教法建議
、僭谥v解排列數(shù)的概念時(shí),要注意區(qū)分“排列數(shù)”與“一個(gè)排列”這兩個(gè)概念。一個(gè)排列是指“從n個(gè)不同元素中,任取出m個(gè)元素,按照一定的順序擺成一排”,它不是一個(gè)數(shù),而是具體的一件事;排列數(shù)是指“從n個(gè)不同元素中取出m個(gè)元素的所有排列的個(gè)數(shù)”,它是一個(gè)數(shù)。例如,從3個(gè)元素a,b,c中每次取出2個(gè)元素,按照一定的順序排成一排,有如下幾種:
ab,ac,ba,bc,ca,cb,
其中每一種都叫一個(gè)排列,共有6種,而數(shù)字6就是排列數(shù),符號(hào)表示排列數(shù)。
、谂帕械亩x中包含兩個(gè)基本內(nèi)容,一是“取出元素”,二是“按一定順序排列”。
從定義知,只有當(dāng)元素完全相同,并且元素排列的順序也完全相同時(shí),才是同一個(gè)排列,元素完全不同,或元素部分相同或元素完全相同而順序不同的排列,都不是同一排列。叫不同排列。
在定義中“一定順序”就是說(shuō)與位置有關(guān),在實(shí)際問(wèn)題中,要由具體問(wèn)題的性質(zhì)和條件來(lái)決定,這一點(diǎn)要特別注意,這也是與后面學(xué)習(xí)的組合的根本區(qū)別。
在排列的定義中,如果有的書(shū)上叫選排列,如果,此時(shí)叫全排列。
要特別注意,不加特殊說(shuō)明,本章不研究重復(fù)排列問(wèn)題。
、坳P(guān)于排列數(shù)公式的推導(dǎo)的'教學(xué)。公式推導(dǎo)要注意緊扣乘法原理,借助框圖的直視解釋來(lái)講解。課本上用的是不完全歸納法,先推導(dǎo),,…,再推廣到,這樣由特殊到一般,由具體到抽象的講法,學(xué)生是不難理解的。
導(dǎo)出公式后要分析這個(gè)公式的構(gòu)成特點(diǎn),以便幫助學(xué)生正確地記憶公式,防止學(xué)生在“n”、“m”比較復(fù)雜的時(shí)候把公式寫(xiě)錯(cuò)。這個(gè)公式的特點(diǎn)可見(jiàn)課本第229頁(yè)的一段話:“其中,公式右邊第一個(gè)因數(shù)是n,后面每個(gè)因數(shù)都比它前面一個(gè)因數(shù)少1,最后一個(gè)因數(shù)是,共m個(gè)因數(shù)相乘!边@實(shí)際是講三個(gè)特點(diǎn):第一個(gè)因數(shù)是什么?最后一個(gè)因數(shù)是什么?一共有多少個(gè)連續(xù)的自然數(shù)相乘。
公式是在引出全排列數(shù)公式后,將排列數(shù)公式變形后得到的公式。對(duì)這個(gè)公式指出兩點(diǎn):
(1)在一般情況下,要計(jì)算具體的排列數(shù)的值,常用前一個(gè)公式,而要對(duì)含有字母的排列數(shù)的式子進(jìn)行變形或作有關(guān)的論證,要用到這個(gè)公式,教材中第230頁(yè)例2就是用這個(gè)公式證明的問(wèn)題;
(2)為使這個(gè)公式在時(shí)也能成立,規(guī)定,如同時(shí)一樣,是一種規(guī)定,因此,不能按階乘數(shù)的原意作解釋。
、芙ㄗh應(yīng)充分利用樹(shù)形圖對(duì)問(wèn)題進(jìn)行分析,這樣比較直觀,便于理解。
⑤學(xué)生在開(kāi)始做排列應(yīng)用題的作業(yè)時(shí),應(yīng)要求他們寫(xiě)出解法的簡(jiǎn)要說(shuō)明,而不能只列出算式、得出答數(shù),這樣有利于學(xué)生得更加扎實(shí)。隨著學(xué)生解題熟練程度的提高,可以逐步降低這種要求。
高中數(shù)學(xué)教案模板6
一、什么是教學(xué)案例
教學(xué)案例是真實(shí)而又典型且含有問(wèn)題的事件。簡(jiǎn)單地說(shuō),一個(gè)教學(xué)案例就是一個(gè)包含有疑難問(wèn)題的實(shí)際情境的描述,是一個(gè)教學(xué)實(shí)踐過(guò)程中的故事,描述的是教學(xué)過(guò)程中“意料之外,情理之中的事”。
這可以從以下幾個(gè)層次來(lái)理解:
教學(xué)案例是事件:教學(xué)案例是對(duì)教學(xué)過(guò)程中的一個(gè)實(shí)際情境的描述。它講述的是一個(gè)故事,敘述的是這個(gè)教學(xué)故事的產(chǎn)生、發(fā)展的歷程,它是對(duì)教學(xué)現(xiàn)象的動(dòng)態(tài)性的把握。
教學(xué)案例是含有問(wèn)題的事件:事件只是案例的基本素材,并不是所有的教學(xué)事件都可以成為案例。能夠成為案例的事件,必須包含有問(wèn)題或疑難情境在內(nèi),并且也可能包含有解決問(wèn)題的方法在內(nèi)。正因?yàn)檫@一點(diǎn),案例才成為一種獨(dú)特的研究成果的表現(xiàn)形式。
案例是真實(shí)而又典型的事件:案例必須是有典型意義的,它必須能給讀者帶來(lái)一定的啟示和體會(huì)。案例與故事之間的根本區(qū)別是:故事是可以杜撰的,而案例是不能杜撰和抄襲的,它所反映的是真是發(fā)生的事件,是教學(xué)事件的真實(shí)再現(xiàn)。是對(duì)“當(dāng)前”課堂中真實(shí)發(fā)生的實(shí)踐情景的描述。它不能用“搖擺椅子上杜撰的事實(shí)來(lái)替代”,也不能從抽象的、概括化的理論中演繹的事實(shí)來(lái)替代。
二、如何進(jìn)行教學(xué)案例研究
教學(xué)案例是教師教學(xué)行為真實(shí)、典型的記錄,也是教師教學(xué)理念和教學(xué)思想的真實(shí)體現(xiàn)。因此它是教育教學(xué)研究的寶貴資源,也是教師之間交流的重要媒介。進(jìn)行教學(xué)案例的研究是教師不斷反思、改進(jìn)自己教學(xué)的一種方法,能促使教師更為深刻地認(rèn)識(shí)到自己工作中的重點(diǎn)和難點(diǎn)。這個(gè)過(guò)程就是教師自我教育和成長(zhǎng)的過(guò)程。
那么如何進(jìn)行教學(xué)案例研究呢?一般情況下,案例研究的程序基本有以下兩個(gè)環(huán)節(jié):案例研究的準(zhǔn)備及實(shí)施、案例研究報(bào)告的撰寫(xiě)與反思。
(一)案例研究的準(zhǔn)備與實(shí)施
1.研究主題的選擇
案例研究都要有研究的重點(diǎn)和主題,這個(gè)主題常與教學(xué)改革的核心理念、常見(jiàn)的疑難問(wèn)題和困惑事件相關(guān),一般來(lái)說(shuō)可以從教學(xué)的各個(gè)方面確定研究的主題,如從教師教學(xué)行為確定主題——教學(xué)材料的選擇、教學(xué)中的提問(wèn)、教學(xué)媒體的使用、教學(xué)評(píng)價(jià)語(yǔ)言、課堂教學(xué)調(diào)控行為等;也可以從學(xué)生的學(xué)習(xí)方式確定主題——探究性學(xué)習(xí)、問(wèn)題解決學(xué)習(xí)、合作學(xué)習(xí)、實(shí)踐性活動(dòng)等。另外從學(xué)科特點(diǎn)、教學(xué)內(nèi)容等都可以確定研究的主題。
研究者要了解當(dāng)前教學(xué)的大背景,教改的大方向,要熟悉相關(guān)的《課程標(biāo)準(zhǔn)》和有針對(duì)性地作一些理論準(zhǔn)備。還要通過(guò)有關(guān)的調(diào)查,搜集詳盡的材料(如閱讀教師的教學(xué)設(shè)計(jì),進(jìn)行訪談等),同時(shí)初步確定案例研究的方向、研究任務(wù),即初步確定案例的內(nèi)容是關(guān)于教學(xué)策略、學(xué)生行為或是教學(xué)技能的研究。
一般來(lái)說(shuō),案例研究主題的確定往往需要思考下面一些問(wèn)題:即研究的事件是否對(duì)于自我發(fā)現(xiàn)更有潛力?選擇的事件對(duì)學(xué)生是否有較大的情感影響(心靈是否受到震撼)?關(guān)鍵事件再現(xiàn)了前人(或自己)過(guò)去成功的行為嗎?事件呈現(xiàn)的是一個(gè)你不能確定怎樣解決的問(wèn)題?事件需要你做出困難的選擇嗎?事件使得你必須以一種感覺(jué)不熟悉的方式或是仍在思考的方式回答嗎?事件暗示一個(gè)與道德或道義上相關(guān)的問(wèn)題嗎?研究的主題如果反映以上的一些內(nèi)容,那么這樣的案例研究在自我學(xué)習(xí)、內(nèi)省和深層次理解方面就可能更加富有成效。
高中數(shù)學(xué)教學(xué)案例研究的主題內(nèi)容主要集中在三方面:(1)學(xué)科特點(diǎn)的體現(xiàn):如數(shù)學(xué)思想方法的教學(xué)、數(shù)學(xué)思維品質(zhì)的培養(yǎng)、本質(zhì)屬性的抽象、數(shù)學(xué)結(jié)論的推廣等;(2)學(xué)生數(shù)學(xué)學(xué)習(xí)規(guī)律的探究:如數(shù)學(xué)學(xué)習(xí)習(xí)慣、解決問(wèn)題的思維方式、獨(dú)立思考與合作學(xué)習(xí)等;(3)教師專(zhuān)業(yè)知識(shí)的提升:如數(shù)學(xué)板書(shū)與電子屏幕的展示對(duì)學(xué)生思維的影響、數(shù)學(xué)語(yǔ)言的訓(xùn)練對(duì)人們思維的影響、數(shù)學(xué)知識(shí)模式化教學(xué)的優(yōu)劣等。
2.案例研究的基本方法
(1)課堂觀察。觀察方法是指研究者按照一定的目的和計(jì)劃,在課堂教學(xué)活動(dòng)的.自然狀態(tài)下,用自己的感官和輔助工具對(duì)研究對(duì)象進(jìn)行觀察研究的一種方法。它可以是教師自己對(duì)教學(xué)對(duì)象——學(xué)生,在課堂活動(dòng)中的片斷進(jìn)行觀察,也可以由其他教師來(lái)實(shí)施觀察,這兩種觀察的目的都是為了掌握課堂教學(xué)中的第一手資料。課堂觀察方法不限于用肉眼觀察、耳聽(tīng)手記,還可利用各種工具如照相、錄音、攝像等作為輔助觀察的手段,以提高觀察的效果。對(duì)觀察的資料,可以逐字逐句整理成課堂教學(xué)實(shí)錄、教學(xué)程序表、提問(wèn)技巧水平檢核表、提問(wèn)行為類(lèi)型頻次表、課堂教學(xué)時(shí)間分配表等,以便以后繼續(xù)分析案例提供翔實(shí)的原始材料。
(2)訪談與調(diào)查。對(duì)一些課堂教學(xué)不能觀察到的師生內(nèi)心活動(dòng),如教師教學(xué)的目的、教學(xué)程序的意圖、教學(xué)手段的運(yùn)用以及教學(xué)達(dá)標(biāo)的成效等一些需要進(jìn)一步了解的問(wèn)題,可以通過(guò)與執(zhí)教教師的交談以及和學(xué)生的座談,以豐富和充實(shí)課堂教學(xué)觀察的材料;對(duì)學(xué)生在課堂教學(xué)活動(dòng)中回答問(wèn)題的心理狀態(tài)、解題思路等問(wèn)題,也可以在課后做一些問(wèn)卷調(diào)查;對(duì)學(xué)生達(dá)標(biāo)的成度、效度,也可以作一些測(cè)試調(diào)查。從這些訪談、調(diào)查的材料中,再分析課堂教學(xué)的現(xiàn)象,不難發(fā)現(xiàn)造成各種課堂現(xiàn)象與教師教學(xué)行為之間的因果關(guān)系,然后再具體尋找在哪個(gè)教學(xué)環(huán)節(jié)中出現(xiàn)問(wèn)題,從中提煉出解決問(wèn)題的對(duì)策。
(3)文獻(xiàn)分析。文獻(xiàn)分析是通過(guò)查閱文獻(xiàn)資料,從過(guò)去和現(xiàn)在的有關(guān)研究成果中受到啟發(fā),從中找到課堂教學(xué)現(xiàn)象的理論依據(jù),從而增強(qiáng)案例分析的說(shuō)服力。當(dāng)然,對(duì)廣大第一線教師而言,這里所運(yùn)用的文獻(xiàn)分析方法,并不是為了論證新教育理論,也不是去歸納教育的宏觀現(xiàn)象,而是通過(guò)有關(guān)教育理論文獻(xiàn)的查閱,去進(jìn)一步解讀課堂教學(xué)的活動(dòng),挖掘案例中的教育思想。如在數(shù)學(xué)教學(xué)中,我們常常通過(guò)學(xué)生的動(dòng)手操作來(lái)獲得有關(guān)的數(shù)學(xué)概念、法則與公式,那么,為什么要這樣做呢?就可以帶著問(wèn)題,查閱、分析有關(guān)文獻(xiàn)資料,從學(xué)習(xí)中提高研究者自身的理論水平。
(二)案例研究報(bào)告的撰寫(xiě)
1.常見(jiàn)的案例報(bào)告格式
撰寫(xiě)教學(xué)案例,結(jié)構(gòu)可以靈活多樣,并非要千篇一律、一個(gè)模式,而是可以有不同的表現(xiàn)形式,如“案例背景——案例描述——案例分析”、“案例過(guò)程——案例反思”、“課例——問(wèn)題——分析”、“主題與背景——情景描述——問(wèn)題討論——詮釋與研究”等。當(dāng)前,國(guó)內(nèi)外課堂教學(xué)案例編寫(xiě)的格式有多種多樣。但不管何種編寫(xiě)格式,它們都有兩個(gè)共同的特點(diǎn):一是對(duì)案例的客觀描述;二是對(duì)案例中所述問(wèn)題、關(guān)鍵教學(xué)事件等的分析。
下面介紹兩種常用的案例編寫(xiě)的格式:
(1)“描述+分析”式
此格式的特點(diǎn)是將整個(gè)案例分為兩大部分,前半部分主要為描述課堂教學(xué)活動(dòng)的情景,后半部分主要針對(duì)情景中的一個(gè)問(wèn)題進(jìn)行理論分析并獲得結(jié)論。案例的描述一般是把課堂教學(xué)活動(dòng)中的某一片斷像講故事一樣原原本本地、具體生動(dòng)地描繪出來(lái)。描述的形式可以是一串問(wèn)答式的課堂對(duì)話,也可以概括式地?cái)⑹,主要是提供一個(gè)或一連串課堂教學(xué)疑難的問(wèn)題,并把教育理論、教育思想隱藏在描述之中。案例的分析部分是針對(duì)描述的情景發(fā)表個(gè)人或多人的感受,同時(shí)加以理論的分析與說(shuō)明。分析方法可以是對(duì)描述中提出的一個(gè)問(wèn)題,從幾個(gè)方面加以分析:也可以是對(duì)描述中的幾個(gè)問(wèn)題,集中從一個(gè)方面加以分析。分析的目的是要從描述的情景中提煉問(wèn)題的本質(zhì),講述理論的解釋?zhuān)鞔_正確的方法,最終獲得對(duì)關(guān)鍵教學(xué)事件的正確把握。
(2)“背景+描述+問(wèn)題+詮釋”式
此格式是一種要求比較高的編寫(xiě)格式,而且,它在實(shí)際教學(xué)中的作用也更大。通常它將整個(gè)案例分為四個(gè)部分:
A.主題與背景
主題是關(guān)鍵教學(xué)事件中所反映的案例主要觀點(diǎn),也是整篇案例的核心思想。背景主要敘述案例發(fā)生的地點(diǎn)、時(shí)間、人物的一些基本情況。當(dāng)然,這部分的內(nèi)容不宜很長(zhǎng),只需提綱挈領(lǐng)敘述清楚即可。
B.情景描述
與“描述+分析”式中的描述相同,主要突出主題所反映的課堂教學(xué)活動(dòng)。
C.問(wèn)題討論
這是根據(jù)主題要求與情景描述,進(jìn)行的分析、歸納、總結(jié)與提煉,包括學(xué)科知識(shí)的要點(diǎn)、教學(xué)法和情景特點(diǎn)以及案例的說(shuō)明與注意事項(xiàng)。這部分內(nèi)容主要是為案例教學(xué)服務(wù)的,目的是提高教師的認(rèn)識(shí)水平與學(xué)生主動(dòng)學(xué)習(xí)的能力。不同的教學(xué)觀念,不同的教學(xué)手段,所提出的問(wèn)題也不同。對(duì)案例中所提出的主題以及情景描述中提出的問(wèn)題闡述自己的見(jiàn)解。
D.詮釋與研究
這部分主要是用教育理論對(duì)案例情景作多角度的解讀。它包括對(duì)課堂教學(xué)行為的技術(shù)資料、課堂教學(xué)實(shí)錄以及教學(xué)活動(dòng)背后的故事等作理論上的分析。例如,在課堂教學(xué)中,我們常看到這樣的現(xiàn)象,課堂教學(xué)的效果高于預(yù)期的目標(biāo),反之教師期望的目標(biāo)學(xué)生沒(méi)有達(dá)到或有所偏離,教學(xué)內(nèi)容呈現(xiàn)的先后與學(xué)生理解的程度、教學(xué)方法運(yùn)用與學(xué)生內(nèi)在動(dòng)機(jī)的激發(fā)等環(huán)節(jié)存在著矛盾,這些事件的背后,必然隱含著豐富的教育思想。所以,通過(guò)詮釋?zhuān)诰蜻@些事件背后的內(nèi)在思想,揭示其教育規(guī)律就顯得十分的必要。
2.案例報(bào)告撰寫(xiě)的關(guān)鍵
(1)掌握四個(gè)原則。要寫(xiě)好教學(xué)案例,除了平時(shí)多積累素材,學(xué)習(xí)他人的案例作品以提高寫(xiě)作技巧外,還應(yīng)把握以下四點(diǎn):
A.主題性原則:要有捕捉關(guān)鍵教學(xué)事件的意識(shí),以此確定案例研究的主題。為此要注意了解新的課程改革的動(dòng)向、把握適合時(shí)代要求的數(shù)學(xué)教育方式、明確學(xué)生數(shù)學(xué)學(xué)習(xí)的難點(diǎn)和重點(diǎn),尋找數(shù)學(xué)教師專(zhuān)業(yè)發(fā)展的途徑與規(guī)律。報(bào)告圍繞主題進(jìn)行情景描述和獲得解決問(wèn)題的策略。這種描述不是簡(jiǎn)單的教學(xué)活動(dòng)實(shí)錄,要反映事件發(fā)生的過(guò)程,重點(diǎn)描述反映關(guān)鍵教學(xué)事件的變化和戲劇化的情境,猶如記敘文寫(xiě)作,突出主題,詳寫(xiě)重點(diǎn),雕刻高潮。
案例鮮明的主題通常關(guān)系到教學(xué)的核心理念、常見(jiàn)問(wèn)題、處理方法等等,可以說(shuō),主題就是案例的靈魂。而主題的最佳表現(xiàn)形式就是文題直接體現(xiàn)主題。因此,設(shè)計(jì)主題就要有新意、有時(shí)代感,通俗地說(shuō)就是與眾不同,要有獨(dú)特見(jiàn)解、獨(dú)家發(fā)現(xiàn)。來(lái)源于實(shí)踐的教學(xué)案例并非都有同等價(jià)值,關(guān)鍵要看撰寫(xiě)者對(duì)實(shí)踐的發(fā)展與理論的升華程度,包括對(duì)題目的推敲。如有的教學(xué)案例重點(diǎn)描述了有戲劇性的情節(jié),用了“細(xì)節(jié)決定成敗”的題目,給人耳目一新,一下子揪住了讀者的心。再如,一些有創(chuàng)意的題目《“導(dǎo)之有方”方能“導(dǎo)之有效”》、《跳出數(shù)學(xué)教數(shù)學(xué)》、《在數(shù)學(xué)的疑難處悟成長(zhǎng)》、《捕捉資源因勢(shì)利導(dǎo)》等等,讓人一看題目就有閱讀的欲望。實(shí)踐證明,在寫(xiě)作案例時(shí),選擇有感悟、有新意的內(nèi)容,在明確主題,恰當(dāng)擬題后再動(dòng)筆,才能寫(xiě)出高質(zhì)量的案例。
B.理論性原則:解決問(wèn)題的策略中應(yīng)當(dāng)蘊(yùn)含一定的教育基本原理和教育思想。實(shí)際是將自己對(duì)教育理念以及教育基本原理的理解滲透于描述的字里行間,比如學(xué)生做了什么,參與程度,投入程度如何,教師如何引導(dǎo)點(diǎn)撥,師生心理、行為變化情況等,無(wú)不體現(xiàn)教師的教學(xué)思想和教育基本原理。
C.敘事性原則:案例報(bào)告的書(shū)寫(xiě)方式是敘事式,它不同于論述式。敘事方式必須以課堂教學(xué)生動(dòng)的事實(shí)為主要情節(jié),可以?shī)A敘夾議,也可以選擇情景片段,可以是一節(jié)課中的情景,也可以是圍繞一個(gè)主題的幾節(jié)課的情景片段。
D.學(xué)科性原則:數(shù)學(xué)案例報(bào)告一定要體現(xiàn)學(xué)科的特征,要有較深刻的理性思考,要反映數(shù)學(xué)的基本思想與方法,要符合課程標(biāo)準(zhǔn),滿(mǎn)足教材內(nèi)容的呈現(xiàn)方法,積極培養(yǎng)良好的思維習(xí)慣。就是撰寫(xiě)者的教育思想和教育理念在教學(xué)實(shí)踐中具體體現(xiàn)。
(2)用好四種表述。教學(xué)案例的表述方法很多,可以歸納為以下四種方法:
A.故事式陳述法:就是教學(xué)全程或某一精彩教學(xué)片段實(shí)錄,包括教師和學(xué)生的一言一行。陳述時(shí),根據(jù)操作程序作一點(diǎn)“簡(jiǎn)評(píng)”,最后作“總評(píng)”。
B.以案說(shuō)理:對(duì)教學(xué)過(guò)程進(jìn)行陳述時(shí),舍去與文題不相關(guān)或不重要的部分,并強(qiáng)化與主題相關(guān)的重要情節(jié),尤其是引發(fā)高潮的關(guān)鍵行為,然后有較長(zhǎng)篇幅的理性思考。
C.圖表展示法:用圖表進(jìn)行統(tǒng)計(jì)的形式體現(xiàn)撰寫(xiě)者的教育思想,給人以一目了然的感覺(jué),幫助讀者迅速了解撰寫(xiě)者的寫(xiě)作意圖,是常用的一種案例撰寫(xiě)方法。比如,描述學(xué)生的參與人數(shù),投入程度,解決問(wèn)題的質(zhì)量等多個(gè)問(wèn)題,都可以在一張或數(shù)張圖表上用百分比或個(gè)(次)數(shù)進(jìn)行統(tǒng)計(jì)。在每一張圖表后,應(yīng)有一段“分析”或“結(jié)論”,將撰寫(xiě)者的教學(xué)理念進(jìn)行理性闡述,亦可在圖表展示后,總的提出自己對(duì)案例的分析和建議。
D.分析討論法:在撰寫(xiě)時(shí),應(yīng)汲取分析討論中最精彩的部分做深入、細(xì)致的全面記錄,最后撰寫(xiě)者還必須對(duì)討論情況做一分析,或提出一些值得今后進(jìn)一步思考的問(wèn)題。
3.優(yōu)秀案例的特征
(1)時(shí)代性:一個(gè)好的案例描述的是現(xiàn)實(shí)生活場(chǎng)景——案例的敘述要把事件置于一個(gè)時(shí)空框架之中,應(yīng)該以關(guān)注今天所面臨的疑難問(wèn)題為著眼點(diǎn),至少應(yīng)該是近年發(fā)生的事情,展示的整個(gè)事實(shí)材料應(yīng)該與整個(gè)時(shí)代及教學(xué)背景相照應(yīng),這樣的案例讀者更愿意接觸。一個(gè)好的案例可以使讀者有身臨其境的感覺(jué),并對(duì)案例所涉及的人產(chǎn)生移情作用。
(2)真實(shí)性:一個(gè)好的案例應(yīng)該包括從案例所反映的對(duì)象那里引述的材料——案例寫(xiě)作必須持一種客觀的態(tài)度,因此可引述一些口頭的或書(shū)面的、正式的或非正式的材料,如對(duì)話、筆記、信函等,以增強(qiáng)案例的真實(shí)感和可讀性。重要的事實(shí)性材料應(yīng)注明資料來(lái)源。
(3)適用性:一個(gè)好的案例需要針對(duì)面臨的疑難問(wèn)題提出解決辦法——案例不能只是提出問(wèn)題,它必須提出解決問(wèn)題的主要思路、具體措施,并包含著解決問(wèn)題的詳細(xì)過(guò)程,這應(yīng)該是案例寫(xiě)作的重點(diǎn)。如果一個(gè)問(wèn)題可以提出多種解決辦法的話,那么最為適宜的方案,就應(yīng)該是與特定的背景材料相關(guān)最密切的那一個(gè)。如果有包治百病、普遍適用的解決問(wèn)題的辦法,那么案例這種形式就不必要存在了。
(4)反思性:一個(gè)好的案例需要有對(duì)已經(jīng)做出的解決問(wèn)題的決策的評(píng)價(jià)——評(píng)價(jià)是為了給新的決策提供參考點(diǎn)?稍诎咐拈_(kāi)頭或結(jié)尾寫(xiě)下案例作者對(duì)自己解決問(wèn)題策略的評(píng)論,以點(diǎn)明案例的基本論點(diǎn)及其價(jià)值。
三、案例研究過(guò)程中需注意的問(wèn)題
1.選材面過(guò)窄。從內(nèi)容上看,多數(shù)案例是關(guān)于課堂教學(xué)甚至局限于一節(jié)課的研究,往往不能說(shuō)明問(wèn)題,或者在一節(jié)課中,也只會(huì)從簡(jiǎn)單的對(duì)話分析問(wèn)題,做不到全方位、多角度。這說(shuō)明教師對(duì)教學(xué)情境的豐富性、復(fù)雜性和聯(lián)系性認(rèn)識(shí)不夠。
2.缺乏典型性。有的案例對(duì)教學(xué)實(shí)踐沒(méi)有挖掘與反思,隨意摘取一些教學(xué)片段泛泛而談、人云亦云,沒(méi)有實(shí)用價(jià)值。不能夠通過(guò)對(duì)某一事件現(xiàn)象的分析、處理、詮釋?zhuān)_(dá)到舉一反三的效果,這樣的案例對(duì)他人沒(méi)什么借鑒作用。
3.主題不明確。主要體現(xiàn)為:
(1)主題渙散。有的案例象記流水帳,沒(méi)有根據(jù)需要進(jìn)行恰當(dāng)?shù)娜∩,看不出作者要反映、探討什么?wèn)題,缺乏指導(dǎo)性、創(chuàng)新性和參考性。
(2)定題過(guò)于隨意。有的案例直接用案例研究依據(jù)的文題為題目,如《“三角函數(shù)”教學(xué)案例》、《“拋物線”教學(xué)案例》等,題目不鮮明、不形象,影響讀者的選讀和案例的傳播。
4.結(jié)構(gòu)不合理。案例作為一種文體,有它自己的寫(xiě)作結(jié)構(gòu),只有優(yōu)化案例的結(jié)構(gòu),才能增強(qiáng)案例的可讀性和指導(dǎo)性。如寫(xiě)成一般的教學(xué)設(shè)計(jì),一般包括“備課思路、教學(xué)目標(biāo)、教學(xué)重點(diǎn)、教學(xué)方法、課前準(zhǔn)備、教學(xué)內(nèi)容、教學(xué)過(guò)程”等內(nèi)容;寫(xiě)成教學(xué)實(shí)錄,把一堂課從頭到尾詳盡地記錄下來(lái),再寫(xiě)上作者的看法;重記錄輕分析,過(guò)程描述多,評(píng)析少等等。沒(méi)有創(chuàng)新,平淡無(wú)趣,看不出案例研究和反映的問(wèn)題。
5.描述與分析脫節(jié)。有的案例描述與分析矛盾,讓人不知所云;有時(shí)反映的是一種觀點(diǎn),分析闡明的是另一種觀點(diǎn),雖然不矛盾,但聯(lián)系不緊密;有的分析中熱衷于抄錄教育理論的一些條條,脫離案例描述的事件而空談理論,顯得空泛無(wú)物。
高中數(shù)學(xué)教案模板7
一、教學(xué)目標(biāo)
1、知識(shí)與技能
。1)掌握斜二測(cè)畫(huà)法畫(huà)水平設(shè)置的平面圖形的直觀圖。
。2)采用對(duì)比的方法了解在平行投影下畫(huà)空間圖形與在中心投影下畫(huà)空間圖形兩種方法的各自特點(diǎn)。
2、過(guò)程與方法
學(xué)生通過(guò)觀察和類(lèi)比,利用斜二測(cè)畫(huà)法畫(huà)出空間幾何體的直觀圖。
3、情感態(tài)度與價(jià)值觀
。1)提高空間想象力與直觀感受。
(2)體會(huì)對(duì)比在學(xué)習(xí)中的作用。
(3)感受幾何作圖在生產(chǎn)活動(dòng)中的應(yīng)用。
二、教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn)、難點(diǎn):用斜二測(cè)畫(huà)法畫(huà)空間幾何值的直觀圖。
三、學(xué)法與教學(xué)用具
1、學(xué)法:學(xué)生通過(guò)作圖感受圖形直觀感,并自然采用斜二測(cè)畫(huà)法畫(huà)空間幾何體的過(guò)程。
2、教學(xué)用具:三角板、圓規(guī)
四、教學(xué)思路
。ㄒ唬﹦(chuàng)設(shè)情景,揭示課題
1、我們都學(xué)過(guò)畫(huà)畫(huà),這節(jié)課我們畫(huà)一物體:圓柱
把實(shí)物圓柱放在講臺(tái)上讓學(xué)生畫(huà)。
2、學(xué)生畫(huà)完后展示自己的結(jié)果并與同學(xué)交流,比較誰(shuí)畫(huà)的效果更好,思考怎樣才能畫(huà)好物體的直觀圖呢?這是我們這節(jié)主要學(xué)習(xí)的內(nèi)容。
(二)研探新知
1、例1,用斜二測(cè)畫(huà)法畫(huà)水平放置的正六邊形的直觀圖,由學(xué)生閱讀理解,并思考斜二測(cè)畫(huà)法的關(guān)鍵步驟,學(xué)生發(fā)表自己的見(jiàn)解,教師及時(shí)給予點(diǎn)評(píng)。
畫(huà)水平放置的多邊形的直觀圖的關(guān)鍵是確定多邊形頂點(diǎn)的位置,因?yàn)槎噙呅雾旤c(diǎn)的位置一旦確定,依次連結(jié)這些頂點(diǎn)就可畫(huà)出多邊形來(lái),因此平面多邊形水平放置時(shí),直觀圖的畫(huà)法可以歸結(jié)為確定點(diǎn)的位置的畫(huà)法。強(qiáng)調(diào)斜二測(cè)畫(huà)法的.步驟。
練習(xí)反饋
根據(jù)斜二測(cè)畫(huà)法,畫(huà)出水平放置的正五邊形的直觀圖,讓學(xué)生獨(dú)立完成后,教師檢查。
2、例2,用斜二測(cè)畫(huà)法畫(huà)水平放置的圓的直觀圖
教師引導(dǎo)學(xué)生與例1進(jìn)行比較,與畫(huà)水平放置的多邊形的直觀圖一樣,畫(huà)水平放置的圓的直觀圖,也是要先畫(huà)出一些有代表性的點(diǎn),由于不能像多邊那樣直接以頂點(diǎn)為代表點(diǎn),因此需要自己構(gòu)造出一些點(diǎn)。
教師組織學(xué)生思考、討論和交流,如何構(gòu)造出需要的一些點(diǎn),與學(xué)生共同完成例2并詳細(xì)板書(shū)畫(huà)法。
3、探求空間幾何體的直觀圖的畫(huà)法
(1)例3,用斜二測(cè)畫(huà)法畫(huà)長(zhǎng)、寬、高分別是4cm、3cm、2cm的長(zhǎng)方體ABCD—A’B’C’D’的直觀圖。
教師引導(dǎo)學(xué)生完成,要注意對(duì)每一步驟提出嚴(yán)格要求,讓學(xué)生按部就班地畫(huà)好每一步,不能敷衍了事。
。2)投影出示幾何體的三視圖、課本P15圖1、2—9,請(qǐng)說(shuō)出三視圖表示的幾何體?并用斜二測(cè)畫(huà)法畫(huà)出它的直觀圖。教師組織學(xué)生思考,討論和交流完成,教師巡視幫不懂的同學(xué)解疑,引導(dǎo)學(xué)生正確把握?qǐng)D形尺寸大小之間的關(guān)系。
4、平行投影與中心投影
投影出示課本P17圖1、2—12,讓學(xué)生觀察比較概括在平行投影下畫(huà)空間圖形與在中心投影下畫(huà)空間圖形的各自特點(diǎn)。
5、鞏固練習(xí),課本P16練習(xí)1(1),2,3,4
三、歸納整理
學(xué)生回顧斜二測(cè)畫(huà)法的關(guān)鍵與步驟
四、作業(yè)
1、書(shū)畫(huà)作業(yè),課本P17練習(xí)第5題
高中數(shù)學(xué)教案模板8
重點(diǎn)難點(diǎn)教學(xué):
1、正確理解映射的概念;
2、函數(shù)相等的兩個(gè)條件;
3、求函數(shù)的定義域和值域。
一、教學(xué)過(guò)程:
1、使學(xué)生熟練掌握函數(shù)的概念和映射的定義;
2、使學(xué)生能夠根據(jù)已知條件求出函數(shù)的定義域和值域;3、使學(xué)生掌握函數(shù)的三種表示方法。
二、教學(xué)內(nèi)容:
1、函數(shù)的定義
設(shè)A、B是兩個(gè)非空的數(shù)集,如果按照某種確定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合A中的任意一個(gè)數(shù)x,在集合B中都有唯一確定的數(shù)()fx和它對(duì)應(yīng),那么稱(chēng):fAB?為從集合A到集合B的一個(gè)函數(shù)(function),記作:
。ǎ,yf_A
其中,x叫自變量,x的取值范圍A叫作定義域(domain),與x的值對(duì)應(yīng)的y值叫函數(shù)值,函數(shù)值的集合{()|}f_A?叫值域(range)。顯然,值域是集合B的子集。
注意:
① “y=f(x)”是函數(shù)符號(hào),可以用任意的字母表示,如“y=g(x)”;
、诤瘮(shù)符號(hào)“y=f(x)”中的f(x)表示與x對(duì)應(yīng)的函數(shù)值,一個(gè)數(shù),而不是f乘x、
2、構(gòu)成函數(shù)的`三要素定義域、對(duì)應(yīng)關(guān)系和值域。
3、映射的定義
設(shè)A、B是兩個(gè)非空的集合,如果按某一個(gè)確定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合A中的任意
一個(gè)元素x,在集合B中都有唯一確定的元素y與之對(duì)應(yīng),那么就稱(chēng)對(duì)應(yīng)f:A→B為從集合A到集合B的一個(gè)映射。
4、區(qū)間及寫(xiě)法:
設(shè)a、b是兩個(gè)實(shí)數(shù),且a
。1)滿(mǎn)足不等式axb?的實(shí)數(shù)x的集合叫做閉區(qū)間,表示為[a,b];
。2)滿(mǎn)足不等式axb?的實(shí)數(shù)x的集合叫做開(kāi)區(qū)間,表示為(a,b);
5、函數(shù)的三種表示方法①解析法②列表法③圖像法
高中數(shù)學(xué)教案模板9
教學(xué)目的:
掌握?qǐng)A的標(biāo)準(zhǔn)方程,并能解決與之有關(guān)的問(wèn)題
教學(xué)重點(diǎn):
圓的標(biāo)準(zhǔn)方程及有關(guān)運(yùn)用
教學(xué)難點(diǎn):
標(biāo)準(zhǔn)方程的靈活運(yùn)用
教學(xué)過(guò)程:
一、導(dǎo)入新課,探究標(biāo)準(zhǔn)方程
二、掌握知識(shí),鞏固練習(xí)
練習(xí):⒈說(shuō)出下列圓的'方程
⑴圓心(3,—2)半徑為5⑵圓心(0,3)半徑為3
⒉指出下列圓的圓心和半徑
、牛▁—2)2+(y+3)2=3
、苮2+y2=2
、莤2+y2—6x+4y+12=0
、撑袛3x—4y—10=0和x2+y2=4的位置關(guān)系
、磮A心為(1,3),并與3x—4y—7=0相切,求這個(gè)圓的方程
三、引伸提高,講解例題
例1、圓心在y=—2x上,過(guò)p(2,—1)且與x—y=1相切求圓的方程(突出待定系數(shù)的數(shù)學(xué)方法)
練習(xí):1、某圓過(guò)(—2,1)、(2,3),圓心在x軸上,求其方程。
2、某圓過(guò)A(—10,0)、B(10,0)、C(0,4),求圓的方程。
例2:某圓拱橋的跨度為20米,拱高為4米,在建造時(shí)每隔4米加一個(gè)支柱支撐,求A2P2的長(zhǎng)度。
例3、點(diǎn)M(x0,y0)在x2+y2=r2上,求過(guò)M的圓的切線方程(一題多解,訓(xùn)練思維)
四、小結(jié)練習(xí)P771,2,3,4
五、作業(yè)P811,2,3,4
高中數(shù)學(xué)教案模板10
教學(xué)目標(biāo)
(1)使學(xué)生正確理解組合的意義,正確區(qū)分排列、組合問(wèn)題;
(2)使學(xué)生掌握組合數(shù)的計(jì)算公式;
(3)通過(guò)學(xué)習(xí)組合知識(shí),讓學(xué)生掌握類(lèi)比的學(xué)習(xí)方法,并提高學(xué)生分析問(wèn)題和解決問(wèn)題的能力;
教學(xué)重點(diǎn)難點(diǎn)
重點(diǎn)是組合的定義、組合數(shù)及組合數(shù)的公式;
難點(diǎn)是解組合的應(yīng)用題.
教學(xué)過(guò)程設(shè)計(jì)
(-)導(dǎo)入新課
(教師活動(dòng))提出下列思考問(wèn)題,打出字幕.
[字幕]一條鐵路線上有6個(gè)火車(chē)站,(1)需準(zhǔn)備多少種不同的普通客車(chē)票?(2)有多少種不同票價(jià)的普通客車(chē)票?上面問(wèn)題中,哪一問(wèn)是排列問(wèn)題?哪一問(wèn)是組合問(wèn)題?
(學(xué)生活動(dòng))討論并回答.
答案提示:(1)排列;(2)組合.
[評(píng)述]問(wèn)題(1)是從6個(gè)火車(chē)站中任選兩個(gè),并按一定的順序排列,要求出排法的種數(shù),屬于排列問(wèn)題;(2)是從6個(gè)火車(chē)站中任選兩個(gè)并成一組,兩站無(wú)順序關(guān)系,要求出不同的組數(shù),屬于組合問(wèn)題.這節(jié)課著重研究組合問(wèn)題.
設(shè)計(jì)意圖:組合與排列所研究的問(wèn)題幾乎是平行的上面設(shè)計(jì)的問(wèn)題目的`是從排列知識(shí)中發(fā)現(xiàn)并提出新的問(wèn)題.
(二)新課講授
[提出問(wèn)題 創(chuàng)設(shè)情境]
(教師活動(dòng))指導(dǎo)學(xué)生帶著問(wèn)題閱讀課文.
[字幕]1.排列的定義是什么?
2.舉例說(shuō)明一個(gè)組合是什么?
3.一個(gè)組合與一個(gè)排列有何區(qū)別?
(學(xué)生活動(dòng))閱讀回答.
(教師活動(dòng))對(duì)照課文,逐一評(píng)析.
設(shè)計(jì)意圖:激活學(xué)生的思維,使其將所學(xué)的知識(shí)遷移過(guò)渡,并盡快適應(yīng)新的環(huán)境.
【歸納概括 建立新知】
(教師活動(dòng))承接上述問(wèn)題的回答,展示下面知識(shí).
[字幕]模型:從 個(gè)不同元素中取出 個(gè)元素并成一組,叫做從 個(gè)不同元素中取出 個(gè)元素的一個(gè)組合.如前面思考題:6個(gè)火車(chē)站中甲站→乙站和乙站→甲站是票價(jià)相同的車(chē)票,是從6個(gè)元素中取出2個(gè)元素的一個(gè)組合.
組合數(shù):從 個(gè)不同元素中取出 個(gè)元素的所有組合的個(gè)數(shù),稱(chēng)之,用符號(hào) 表示,如從6個(gè)元素中取出2個(gè)元素的組合數(shù)為 .
[評(píng)述]區(qū)分一個(gè)排列與一個(gè)組合的關(guān)鍵是:該問(wèn)題是否與順序有關(guān),當(dāng)取出元素后,若改變一下順序,就得到一種新的取法,則是排列問(wèn)題;若改變順序,仍得原來(lái)的取法,就是組合問(wèn)題.
(學(xué)生活動(dòng))傾聽(tīng)、思索、記錄.
(教師活動(dòng))提出思考問(wèn)題.
[投影] 與 的關(guān)系如何?
(師生活動(dòng))共同探討.求從 個(gè)不同元素中取出 個(gè)元素的排列數(shù) ,可分為以下兩步:
第1步,先求出從這 個(gè)不同元素中取出 個(gè)元素的組合數(shù)為 ;
第2步,求每一個(gè)組合中 個(gè)元素的全排列數(shù)為 .根據(jù)分步計(jì)數(shù)原理,得到
[字幕]公式1:
公式2:
(學(xué)生活動(dòng))驗(yàn)算 ,即一條鐵路上6個(gè)火車(chē)站有15種不同的票價(jià)的普通客車(chē)票.
設(shè)計(jì)意圖:本著以認(rèn)識(shí)概念為起點(diǎn),以問(wèn)題為主線,以培養(yǎng)能力為核心的宗旨,逐步展示知識(shí)的形成過(guò)程,使學(xué)生思維層層被激活、逐漸深入到問(wèn)題當(dāng)中去.
【例題示范 探求方法】
(教師活動(dòng))打出字幕,給出示范,指導(dǎo)訓(xùn)練.
[字幕]例1 列舉從4個(gè)元素 中任取2個(gè)元素的所有組合.
例2 計(jì)算:(1) ;(2) .
(學(xué)生活動(dòng))板演、示范.
(教師活動(dòng))講評(píng)并指出用兩種方法計(jì)算例2的第2小題.
[字幕]例3 已知 ,求 的所有值.
(學(xué)生活動(dòng))思考分析.
解 首先,根據(jù)組合的定義,有
、
其次,由原不等式轉(zhuǎn)化為
即
解得 ②
綜合①、②,得 ,即
[點(diǎn)評(píng)]這是組合數(shù)公式的應(yīng)用,關(guān)鍵是公式的選擇.
設(shè)計(jì)意圖:例題教學(xué)循序漸進(jìn),讓學(xué)生鞏固知識(shí),強(qiáng)化公式的應(yīng)用,從而培養(yǎng)學(xué)生的綜合分析能力.
【反饋練習(xí) 學(xué)會(huì)應(yīng)用】
(教師活動(dòng))給出練習(xí),學(xué)生解答,教師點(diǎn)評(píng).
[課堂練習(xí)]課本P99練習(xí)第2,5,6題.
[補(bǔ)充練習(xí)]
[字幕]1.計(jì)算:
2.已知 ,求 .
(學(xué)生活動(dòng))板演、解答.
設(shè)計(jì)意圖:課堂教學(xué)體現(xiàn)以學(xué)生為本,讓全體學(xué)生參與訓(xùn)練,深刻揭示排列數(shù)公式的結(jié)構(gòu)、特征及應(yīng)用.
(三)小結(jié)
(師生活動(dòng))共同小結(jié).
本節(jié)主要內(nèi)容有
1.組合概念.
2.組合數(shù)計(jì)算的兩個(gè)公式.
(四)布置作業(yè)
1.課本作業(yè):習(xí)題10 3第1(1)、(4),3題.
2.思考題:某學(xué)習(xí)小組有8個(gè)同學(xué),從男生中選2人,女生中選1人參加數(shù)學(xué)、物理、化學(xué)三種學(xué)科競(jìng)賽,要求每科均有1人參加,共有180種不同的選法,那么該小組中,男、女同學(xué)各有多少人?
3.研究性題:
在 的 邊上除頂點(diǎn) 外有 5個(gè)點(diǎn),在 邊上有 4個(gè)點(diǎn),由這些點(diǎn)(包括 )能組成多少個(gè)四邊形?能組成多少個(gè)三角形?
(五)課后點(diǎn)評(píng)
在學(xué)習(xí)了排列知識(shí)的基礎(chǔ)上,本節(jié)課引進(jìn)了組合概念,并推導(dǎo)出組合數(shù)公式,同時(shí)調(diào)控進(jìn)行訓(xùn)練,從而培養(yǎng)學(xué)生分析問(wèn)題、解決問(wèn)題的能力.
高中數(shù)學(xué)教案模板11
一、指導(dǎo)思想與理論依據(jù)
數(shù)學(xué)是一門(mén)培養(yǎng)人的思維,發(fā)展人的思維的重要學(xué)科。因此,在教學(xué)中,不僅要使學(xué)生“知其然”而且要使學(xué)生“知其所以然”。所以在學(xué)生為主體,教師為主導(dǎo)的原則下,要充分揭示獲取知識(shí)和方法的思維過(guò)程。因此本節(jié)課我以建構(gòu)主義的“創(chuàng)設(shè)問(wèn)題情境——提出數(shù)學(xué)問(wèn)題——嘗試解決問(wèn)題——驗(yàn)證解決方法”為主,主要采用觀察、啟發(fā)、類(lèi)比、引導(dǎo)、探索相結(jié)合的教學(xué)方法。在教學(xué)手段上,則采用多媒體輔助教學(xué),將抽象問(wèn)題形象化,使教學(xué)目標(biāo)體現(xiàn)的更加完美。
二、教材分析
三角函數(shù)的誘導(dǎo)公式是普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)(人教A版)數(shù)學(xué)必修四,第一章第三節(jié)的內(nèi)容,其主要內(nèi)容是三角函數(shù)誘導(dǎo)公式中的公式(二)至公式(六)、本節(jié)是第一課時(shí),教學(xué)內(nèi)容為公式(二)、(三)、(四)、教材要求通過(guò)學(xué)生在已經(jīng)掌握的任意角的三角函數(shù)的定義和誘導(dǎo)公式(一)的基礎(chǔ)上,利用對(duì)稱(chēng)思想發(fā)現(xiàn)任意角與、 、終邊的對(duì)稱(chēng)關(guān)系,發(fā)現(xiàn)他們與單位圓的交點(diǎn)坐標(biāo)之間關(guān)系,進(jìn)而發(fā)現(xiàn)他們的三角函數(shù)值的關(guān)系,即發(fā)現(xiàn)、掌握、應(yīng)用三角函數(shù)的誘導(dǎo)公式公式(二)、(三)、(四)、同時(shí)教材滲透了轉(zhuǎn)化與化歸等數(shù)學(xué)思想方法,為培養(yǎng)學(xué)生養(yǎng)成良好的學(xué)習(xí)習(xí)慣提出了要求、為此本節(jié)內(nèi)容在三角函數(shù)中占有非常重要的地位、
三、學(xué)情分析
本節(jié)課的授課對(duì)象是本校高一(1)班全體同學(xué),本班學(xué)生水平處于中等偏下,但本班學(xué)生具有善于動(dòng)手的良好學(xué)習(xí)習(xí)慣,所以采用發(fā)現(xiàn)的教學(xué)方法應(yīng)該能輕松的完成本節(jié)課的教學(xué)內(nèi)容、
四、教學(xué)目標(biāo)
(1)、基礎(chǔ)知識(shí)目標(biāo):理解誘導(dǎo)公式的發(fā)現(xiàn)過(guò)程,掌握正弦、余弦、正切的誘導(dǎo)公式;
。2)、能力訓(xùn)練目標(biāo):能正確運(yùn)用誘導(dǎo)公式求任意角的正弦、余弦、正切值,以及進(jìn)行簡(jiǎn)單的三角函數(shù)求值與化簡(jiǎn);
。3)、創(chuàng)新素質(zhì)目標(biāo):通過(guò)對(duì)公式的推導(dǎo)和運(yùn)用,提高三角恒等變形的能力和滲透化歸、數(shù)形結(jié)合的數(shù)學(xué)思想,提高學(xué)生分析問(wèn)題、解決問(wèn)題的能力;
(4)、個(gè)性品質(zhì)目標(biāo):通過(guò)誘導(dǎo)公式的學(xué)習(xí)和應(yīng)用,感受事物之間的普通聯(lián)系規(guī)律,運(yùn)用化歸等數(shù)學(xué)思想方法,揭示事物的本質(zhì)屬性,培養(yǎng)學(xué)生的唯物史觀、
五、教學(xué)重點(diǎn)和難點(diǎn)
1、教學(xué)重點(diǎn)
理解并掌握誘導(dǎo)公式、
2、教學(xué)難點(diǎn)
正確運(yùn)用誘導(dǎo)公式,求三角函數(shù)值,化簡(jiǎn)三角函數(shù)式、
六、教法學(xué)法以及預(yù)期效果分析
“授人以魚(yú)不如授之以魚(yú)”,作為一名老師,我們不僅要傳授給學(xué)生數(shù)學(xué)知識(shí),更重要的是傳授給學(xué)生數(shù)學(xué)思想方法,如何實(shí)現(xiàn)這一目的,要求我們每一位教者苦心鉆研、認(rèn)真探究、下面我從教法、學(xué)法、預(yù)期效果等三個(gè)方面做如下分析、
1、教法
數(shù)學(xué)教學(xué)是數(shù)學(xué)思維活動(dòng)的教學(xué),而不僅僅是數(shù)學(xué)活動(dòng)的結(jié)果,數(shù)學(xué)學(xué)習(xí)的目的不僅僅是為了獲得數(shù)學(xué)知識(shí),更主要作用是為了訓(xùn)練人的思維技能,提高人的思維品質(zhì)、
在本節(jié)課的教學(xué)過(guò)程中,本人以學(xué)生為主題,以發(fā)現(xiàn)為主線,盡力滲透類(lèi)比、化歸、數(shù)形結(jié)合等數(shù)學(xué)思想方法,采用提出問(wèn)題、啟發(fā)引導(dǎo)、共同探究、綜合應(yīng)用等教學(xué)模式,還給學(xué)生“時(shí)間”、“空間”,由易到難,由特殊到一般,盡力營(yíng)造輕松的學(xué)習(xí)環(huán)境,讓學(xué)生體味學(xué)習(xí)的快樂(lè)和成功的喜悅、
2、學(xué)法
“現(xiàn)代的文盲不是不識(shí)字的人,而是沒(méi)有掌握學(xué)習(xí)方法的人”,很多課堂教學(xué)常常以高起點(diǎn)、大容量、快推進(jìn)的做法,以便教給學(xué)生更多的知識(shí)點(diǎn),卻忽略了學(xué)生接受知識(shí)需要時(shí)間消化,進(jìn)而泯滅了學(xué)生學(xué)習(xí)的興趣與熱情、如何能讓學(xué)生最大程度的消化知識(shí),提高學(xué)習(xí)熱情是教者必須思考的問(wèn)題、
在本節(jié)課的教學(xué)過(guò)程中,本人引導(dǎo)學(xué)生的學(xué)法為思考問(wèn)題、共同探討、解決問(wèn)題簡(jiǎn)單應(yīng)用、重現(xiàn)探索過(guò)程、練習(xí)鞏固。讓學(xué)生參與探索的全部過(guò)程,讓學(xué)生在獲取新知識(shí)及解決問(wèn)題的方法后,合作交流、共同探索,使之由被動(dòng)學(xué)習(xí)轉(zhuǎn)化為主動(dòng)的自主學(xué)習(xí)、
3、預(yù)期效果
本節(jié)課預(yù)期讓學(xué)生能正確理解誘導(dǎo)公式的發(fā)現(xiàn)、證明過(guò)程,掌握誘導(dǎo)公式,并能熟練應(yīng)用誘導(dǎo)公式了解一些簡(jiǎn)單的化簡(jiǎn)問(wèn)題、
七、教學(xué)流程設(shè)計(jì)
。ㄒ唬﹦(chuàng)設(shè)情景
1、復(fù)習(xí)銳角300,450,600的`三角函數(shù)值;
2、復(fù)習(xí)任意角的三角函數(shù)定義;
3、問(wèn)題:由,你能否知道sin2100的值嗎?引如新課、
設(shè)計(jì)意圖
自信的鼓勵(lì)是增強(qiáng)學(xué)生學(xué)習(xí)數(shù)學(xué)的自信,簡(jiǎn)單易做的題加強(qiáng)了每個(gè)學(xué)生學(xué)習(xí)的熱情,具體數(shù)據(jù)問(wèn)題的出現(xiàn),讓學(xué)生既有好像會(huì)做的心理但又有迷惑的茫然,去發(fā)掘潛力期待尋找機(jī)會(huì)證明我能行,從而思考解決的辦法、
。ǘ┬轮骄
1、讓學(xué)生發(fā)現(xiàn)300角的終邊與2100角的終邊之間有什么關(guān)系;
2、讓學(xué)生發(fā)現(xiàn)300角的終邊和2100角的終邊與單位圓的交點(diǎn)的坐標(biāo)有什么關(guān)系;
3、Sin2100與sin300之間有什么關(guān)系、
設(shè)計(jì)意圖
由特殊問(wèn)題的引入,使學(xué)生容易了解,實(shí)現(xiàn)教學(xué)過(guò)程的平淡過(guò)度,為同學(xué)們探究發(fā)現(xiàn)任意角與的三角函數(shù)值的關(guān)系做好鋪墊、
。ㄈ﹩(wèn)題一般化
探究一
1、探究發(fā)現(xiàn)任意角的終邊與的終邊關(guān)于原點(diǎn)對(duì)稱(chēng);
2、探究發(fā)現(xiàn)任意角的終邊和角的終邊與單位圓的交點(diǎn)坐標(biāo)關(guān)于原點(diǎn)對(duì)稱(chēng);
3、探究發(fā)現(xiàn)任意角與的三角函數(shù)值的關(guān)系、
設(shè)計(jì)意圖
首先應(yīng)用單位圓,并以對(duì)稱(chēng)為載體,用聯(lián)系的觀點(diǎn),把單位圓的性質(zhì)與三角函數(shù)聯(lián)系起來(lái),數(shù)形結(jié)合,問(wèn)題的設(shè)計(jì)提問(wèn)從特殊到一般,從線對(duì)稱(chēng)到點(diǎn)對(duì)稱(chēng)到三角函數(shù)值之間的關(guān)系,逐步上升,一氣呵成誘導(dǎo)公式二、同時(shí)也為學(xué)生將要自主發(fā)現(xiàn)、探索公式三和四起到示范作用,下面練習(xí)設(shè)計(jì)為了熟悉公式一,讓學(xué)生感知到成功的喜悅,進(jìn)而敢于挑戰(zhàn),敢于前進(jìn)
。ㄋ模┚毩(xí)
利用誘導(dǎo)公式(二),口答下列三角函數(shù)值、
。1)、;(2)、;(3)、 、
喜悅之后讓我們重新啟航,接受新的挑戰(zhàn),引入新的問(wèn)題、
。ㄎ澹﹩(wèn)題變形
由sin3000= —sin600出發(fā),用三角的定義引導(dǎo)學(xué)生求出sin(—3000),Sin150 0值,讓學(xué)生聯(lián)想若已知sin3000= —sin600,能否求出sin(—3000),Sin150 0)的值、學(xué)生自主探究
高中數(shù)學(xué)教案模板12
一、教學(xué)目標(biāo)
1、知識(shí)與能力目標(biāo)
、偈箤W(xué)生理解數(shù)列極限的概念和描述性定義。
、谑箤W(xué)生會(huì)判斷一些簡(jiǎn)單數(shù)列的極限,了解數(shù)列極限的“e—N"定義,能利用逐步分析的方法證明一些數(shù)列的極限。
③通過(guò)觀察運(yùn)動(dòng)和變化的過(guò)程,歸納總結(jié)數(shù)列與其極限的特定關(guān)系,提高學(xué)生的數(shù)學(xué)概括能力和抽象思維能力。
2、過(guò)程與方法目標(biāo)
培養(yǎng)學(xué)生的極限的思想方法和獨(dú)立學(xué)習(xí)的能力。
3、情感、態(tài)度、價(jià)值觀目標(biāo)
使學(xué)生初步認(rèn)識(shí)有限與無(wú)限、近似與精確、量變與質(zhì)變的辯證關(guān)系,培養(yǎng)學(xué)生的辯證唯物主義觀點(diǎn)。
二、教學(xué)重點(diǎn)和難點(diǎn)
教學(xué)重點(diǎn):數(shù)列極限的概念和定義。
教學(xué)難點(diǎn):數(shù)列極限的“ε―N”定義的理解。
三、教學(xué)對(duì)象分析
這節(jié)課是數(shù)列極限的第一節(jié)課,足學(xué)生學(xué)習(xí)極限的入門(mén)課,對(duì)于學(xué)生來(lái)說(shuō)是一個(gè)全新的內(nèi)容,學(xué)生的思維正處于由經(jīng)驗(yàn)型抽象思維向理論型抽象思維過(guò)渡階段,在《立體幾何》內(nèi)容求球的表面積和體積時(shí)對(duì)極限思想已有接觸,而學(xué)生在以往的數(shù)學(xué)學(xué)習(xí)中主要接觸的是關(guān)于“有限”的問(wèn)題,很少涉及“無(wú)限”的問(wèn)題。極限這一抽象概念能夠使他們做基于直觀的理解,并引導(dǎo)他們作出描述性定義“當(dāng)n無(wú)限增大時(shí),數(shù)列{an}中的項(xiàng)an無(wú)限趨近于常數(shù)A,也就是an與A的差的絕對(duì)值無(wú)限趨近于0”,并能用這個(gè)定義判斷一些簡(jiǎn)單數(shù)列的極限。但要使他們?cè)谝还?jié)課內(nèi)掌握“ε—N”語(yǔ)言求極限要求過(guò)高。因此不宜講得太難,能夠通過(guò)具體的幾個(gè)例子,歸納研究一些簡(jiǎn)單的數(shù)列的極限。使學(xué)生理解極限的基本概念,認(rèn)識(shí)什么叫做數(shù)列的極限以及數(shù)列極限的定義即可。
四、教學(xué)策略及教法設(shè)計(jì)
本課是采用啟發(fā)式講授教學(xué)法,通過(guò)多媒體課件演示及學(xué)生討論的方法進(jìn)行教學(xué)。通過(guò)學(xué)生比較熟悉的一個(gè)實(shí)際問(wèn)題入手,引起學(xué)生的注意,激發(fā)學(xué)生的學(xué)習(xí)興趣。然后通過(guò)具體的兩個(gè)比較簡(jiǎn)單的數(shù)列,運(yùn)用多媒體課件演示向?qū)W生展示了數(shù)列中的各項(xiàng)隨著項(xiàng)數(shù)的增大,無(wú)限地趨向于某個(gè)常數(shù)的過(guò)程,讓學(xué)生在觀察的基礎(chǔ)上討論總結(jié)出這兩個(gè)數(shù)列的特征,從而得出數(shù)列極限的'一個(gè)描述性定義。再在教師的引導(dǎo)下分析數(shù)列極限的各種不同情況。從而對(duì)數(shù)列極限有了直觀上的認(rèn)識(shí),接著讓學(xué)生根據(jù)數(shù)列中各項(xiàng)的情況判斷一些簡(jiǎn)單的數(shù)列的極限。從而達(dá)到深化定義的效果。最后進(jìn)行練習(xí)鞏固,通過(guò)這樣的一個(gè)完整的教學(xué)過(guò)程,由觀察到分析、由定量到定性,由直觀到抽象,并借助于多媒體課件的演示,使得學(xué)生逐步地了解極限這個(gè)新的概念,為下節(jié)課的極限的運(yùn)算及應(yīng)用做準(zhǔn)備,為以后學(xué)習(xí)高等數(shù)學(xué)知識(shí)打下基礎(chǔ)。在整個(gè)教學(xué)過(guò)程中注意突出重點(diǎn),突破難點(diǎn),達(dá)到教學(xué)目標(biāo)的要求。
五、教學(xué)過(guò)程
1、創(chuàng)設(shè)情境
課件展示創(chuàng)設(shè)情境動(dòng)畫(huà)。
今天我們將要學(xué)習(xí)一個(gè)很重要的新的知識(shí)。
情境
。1)我國(guó)古代數(shù)學(xué)家劉徽于公元263年創(chuàng)立“割圓術(shù)”,“割之彌細(xì),所失彌少。割之又割,以至不可割,則與圓周合體而無(wú)所失矣”。
情境
。2)我國(guó)古代哲學(xué)家莊周所著的《莊子·天下篇》引用過(guò)一句話:一尺之棰,日取其半,萬(wàn)世不竭。也就是說(shuō)拿一根木棒,將它切成一半,拿其中一半來(lái)再切成一半,得到四分之一,再切成一半,就得到了八分之?如此下去,無(wú)限次地切,每次都切一半,問(wèn)是否會(huì)切完?
大家都知道,這是不可能切完的,但是每次切了以后,木棒都比原來(lái)的少了一半,也就是說(shuō)木棒的長(zhǎng)度越來(lái)越短,但永遠(yuǎn)不會(huì)變成零。從而引出極限的概念。
2、定義探究
展示定義探索(一)動(dòng)畫(huà)演示。
問(wèn)題1:請(qǐng)觀察以下無(wú)窮數(shù)列,當(dāng)n無(wú)限增大時(shí),a,I的變化趨勢(shì)有什么特點(diǎn)?
。1)1/2,2/3,3/4,n/n—1
。2)0.9,0.99,0.999,0.9999,1—1/10n
問(wèn)題2:觀察課件演示,請(qǐng)分析以上兩個(gè)數(shù)列隨項(xiàng)數(shù)n的增大項(xiàng)有那些特點(diǎn)?
師生一起歸納總結(jié)出以下結(jié)論:數(shù)列(1)項(xiàng)數(shù)n無(wú)限增大時(shí),項(xiàng)無(wú)限趨近于1;數(shù)列(2)項(xiàng)數(shù)n無(wú)限增大時(shí),項(xiàng)無(wú)限趨近于1。
那么就把1叫數(shù)列(1)的極限,1叫數(shù)列(2)的極限。這兩個(gè)數(shù)列只是形式不同,它們都是隨項(xiàng)數(shù)n的無(wú)限增大,項(xiàng)無(wú)限趨近于某一確定常數(shù),這個(gè)常數(shù)叫做這個(gè)數(shù)列的極限。
那么,什么叫數(shù)列的極限呢?對(duì)于無(wú)窮數(shù)列an,如果當(dāng)n無(wú)限增大時(shí),an無(wú)限趨向于某一個(gè)常數(shù)A,則稱(chēng)A是數(shù)列an的極限。
提出問(wèn)題3:怎樣用數(shù)學(xué)語(yǔ)言來(lái)定量描述呢?怎樣用數(shù)學(xué)語(yǔ)言來(lái)描述上述數(shù)列的變化趨勢(shì)?
展示定義探索(二)動(dòng)畫(huà)演示。
師生共同總結(jié)發(fā)現(xiàn)在數(shù)軸上兩點(diǎn)間距離越小,項(xiàng)與1越趨近,因此可以借助兩點(diǎn)間距離無(wú)限小的方式來(lái)描述項(xiàng)無(wú)限趨近常數(shù)。無(wú)論預(yù)先指定多么小的正數(shù)e,如取e=O—1,總能在數(shù)列中找到一項(xiàng)am,使得an項(xiàng)后面的所有項(xiàng)與1的差的絕對(duì)值都小于ε,若取£=0.0001,則第6項(xiàng)后面的所有項(xiàng)與1的差的絕對(duì)值都小于ε,即1是數(shù)列(1)的極限。最后,師生共同總結(jié)出數(shù)列的極限定義中應(yīng)包含哪量(用這些量來(lái)描述數(shù)列1的極限)。
數(shù)列的極限為:對(duì)于任意的ε>0,如果總存在自然數(shù)N,當(dāng)n>N時(shí),不等式|an—A|n的極限。
課件可以實(shí)現(xiàn)任意輸入一個(gè)n值,可以計(jì)算出相應(yīng)的數(shù)列第n項(xiàng)的值,并且動(dòng)畫(huà)演示數(shù)列的變化過(guò)程。如圖1所示是課件運(yùn)行時(shí)的一個(gè)畫(huà)面。
定義探索動(dòng)畫(huà)(二)課件可以實(shí)現(xiàn)任意輸入一個(gè)n值,可以計(jì)算出相應(yīng)的數(shù)列第n項(xiàng)的值和Ian一1I的值,并且動(dòng)畫(huà)演示出第an項(xiàng)和1之間的距離。如圖2所示是課件運(yùn)行時(shí)的一個(gè)畫(huà)面。
3、知識(shí)應(yīng)用
這里舉了3道例題,與學(xué)生一塊思考,一起分析作答。
例1、已知數(shù)列:
1,—1/2,1/3,—1/4,1/5,(—1)n+11/n,(1)計(jì)算an—0(2)第幾項(xiàng)后面的所有項(xiàng)與0的差的絕對(duì)值都小于0.017都小于任意指定的正數(shù)。
(3)確定這個(gè)數(shù)列的極限。
例2、已知數(shù)列:
已知數(shù)列:3/2,9/4,15/8,2+(—1/2)n。
猜測(cè)這個(gè)數(shù)列有無(wú)極限,如果有,應(yīng)該是什么數(shù)?并求出從第幾項(xiàng)開(kāi)始,各項(xiàng)與這個(gè)極限的差都小于0.1,從第幾項(xiàng)開(kāi)始,各項(xiàng)與這個(gè)極限的差都小于0.017
例3、求常數(shù)數(shù)列一7,一7,一7,一7,的極限。
4、知識(shí)小結(jié)
這節(jié)課我們研究了數(shù)列極限的概念,對(duì)數(shù)列極限有了初步的認(rèn)識(shí)。數(shù)列極限研究的是無(wú)限變化的趨勢(shì),而通過(guò)對(duì)數(shù)列極限定義的探討,我們看到這一過(guò)程又是通過(guò)有限來(lái)把握的,有限與無(wú)限、近似與精確、量變與質(zhì)變之間的辯證關(guān)系在這里得到了充分的體現(xiàn)。
課后練習(xí):
。1)判斷下列數(shù)列是否有極限,如果有的話請(qǐng)求出它的極限值。①an=4n+l/n;②an=4—(1/3)m;③an=(—1)n/3n;④aan=—2;⑤an=n;⑥an=(—1)n。
。2)課本練習(xí)1,2。
5、探究性問(wèn)題
設(shè)計(jì)研究性學(xué)習(xí)的思考題。
提出問(wèn)題:
芝諾悖論:阿基里斯是《荷馬史詩(shī)》中的善跑英雄。奔跑中的阿基里斯永遠(yuǎn)也無(wú)法超過(guò)在他前面慢慢爬行的烏龜,因?yàn)楫?dāng)阿基里斯到達(dá)烏龜?shù)钠鹋茳c(diǎn)時(shí),烏龜已經(jīng)走在前面一小段路了,阿基里斯又必須趕過(guò)這一小段路,而烏龜又向前走了。這樣,阿基里斯可無(wú)限接近它,但不能追到它。假定阿基里斯跑步的速度是烏龜速度的10倍,阿基里斯與烏龜賽跑的路程是1公里。如果讓烏龜先跑0.1公里,當(dāng)阿基里斯追到O。1公里的地方,烏龜又向前跑了0.01公里。當(dāng)阿基里斯追到0.01公里的地方,烏龜又向前跑了0.001公里這樣一直追下去,阿基里斯能追上烏龜嗎?
這里是研究性學(xué)習(xí)內(nèi)容,以學(xué)生感興趣的悖論作為課后作業(yè),鞏固本節(jié)所學(xué)內(nèi)容,進(jìn)一步提高了學(xué)生學(xué)習(xí)數(shù)列的極限的興趣。同時(shí)也為學(xué)生創(chuàng)設(shè)了課下交流與討論的情境,逐步培養(yǎng)學(xué)生相互合作、交流和討論的習(xí)慣,使學(xué)生感受到了數(shù)學(xué)來(lái)源于生活,又服務(wù)于生活的實(shí)質(zhì),逐步養(yǎng)成用數(shù)學(xué)的知識(shí)去解決生活中遇到的實(shí)際問(wèn)題的習(xí)慣。
高中數(shù)學(xué)教案模板13
教學(xué)目標(biāo)
1.了解映射的概念,象與原象的概念,和一一映射的概念.
。1)明確映射是特殊的對(duì)應(yīng)即由集合 ,集合 和對(duì)應(yīng)法則f三者構(gòu)成的一個(gè)整體,知道映射的特殊之處在于必須是多對(duì)一和一對(duì)一的對(duì)應(yīng);
。2)能準(zhǔn)確使用數(shù)學(xué)符號(hào)表示映射, 把握映射與一一映射的區(qū)別;
(3)會(huì)求給定映射的指定元素的象與原象,了解求象與原象的方法.
2.在概念形成過(guò)程中,培養(yǎng)學(xué)生的觀察,比較和歸納的能力.
3.通過(guò)映射概念的學(xué)習(xí),逐步提高學(xué)生對(duì)知識(shí)的探究能力.
教學(xué)建議
教材分析
。1)知識(shí)結(jié)構(gòu)
映射是一種特殊的對(duì)應(yīng),一一映射又是一種特殊的映射,而且函數(shù)也是特殊的映射,它們之間的關(guān)系可以通過(guò)下圖表示出來(lái),如圖:
由此我們可從集合的包含關(guān)系中幫助我們把握相關(guān)概念間的區(qū)別與聯(lián)系.
。2)重點(diǎn),難點(diǎn)分析
本節(jié)的教學(xué)重點(diǎn)和難點(diǎn)是映射和一一映射概念的形成與認(rèn)識(shí).
、儆成涞母拍钍潜容^抽象的概念,它是在初中所學(xué)對(duì)應(yīng)的基礎(chǔ)上發(fā)展而來(lái).教學(xué)中應(yīng)特別強(qiáng)調(diào)對(duì)應(yīng)集合 B中的唯一這點(diǎn)要求的理解;
映射是學(xué)生在初中所學(xué)的對(duì)應(yīng)的基礎(chǔ)上學(xué)習(xí)的,對(duì)應(yīng)本身就是由三部分構(gòu)成的整體,包括集 合A和集合B及對(duì)應(yīng)法則f,由于法則的`不同,對(duì)應(yīng)可分為一對(duì)一,多對(duì)一,一對(duì)多和多對(duì)多. 其中只有一對(duì)一和多對(duì)一的能構(gòu)成映射,由此可以看到映射必是“對(duì)B中之唯一”,而只要是對(duì)應(yīng)就必須保證讓A中之任一與B中元素相對(duì)應(yīng),所以滿(mǎn)足一對(duì)一和多對(duì)一的對(duì)應(yīng)就能體現(xiàn)出“任一對(duì)唯一”.
、诙灰挥成溆衷谟成涞幕A(chǔ)上增加新的要求,決定了它在學(xué)習(xí)中是比較困難的.
教法建議
(1)在映射概念引入時(shí),可先從學(xué)生熟悉的對(duì)應(yīng)入手, 選擇一些具體的生活例子,然后再舉一些數(shù)學(xué)例子,分為一對(duì)多、多對(duì)一、多對(duì)一、一對(duì)一四種情況,讓學(xué)生認(rèn)真觀察,比較,再引導(dǎo)學(xué)生發(fā)現(xiàn)其中一對(duì)一和多對(duì)一的對(duì)應(yīng)是映射,逐步歸納概括出映射的基本特征,讓學(xué)生的認(rèn)識(shí)從感性認(rèn)識(shí)到理性認(rèn)識(shí).
。2)在剛開(kāi)始學(xué)習(xí)映射時(shí),為了能讓學(xué)生看清映射的構(gòu)成,可以選擇用圖形表示映射,在集合的選擇上可選擇能用列舉法表示的有限集,法則盡量用語(yǔ)言描述,這樣的表示方法讓學(xué)生可以比較直觀的認(rèn)識(shí)映射,而后再選擇用抽象的數(shù)學(xué)符號(hào)表示映射,比如:
。3)對(duì)于學(xué)生層次較高的學(xué)校可以在給出定義后讓學(xué)生根據(jù)自己的理解舉出映射的例子,教師也給出一些映射的例子,讓學(xué)生從中發(fā)現(xiàn)映射的特點(diǎn),并用自己的語(yǔ)言描述出來(lái),最后教師加以概括,再?gòu)闹幸鲆灰挥成涓拍;?duì)于學(xué)生層次較低的學(xué)校,則可以由教師給出一些例子讓學(xué)生觀察,教師引導(dǎo)學(xué)生發(fā)現(xiàn)映射的特點(diǎn),一起概括.最后再讓學(xué)生舉例,并逐步增加要求向一一映射靠攏,引出一一映射概念.
。4)關(guān)于求象和原象的問(wèn)題,應(yīng)在計(jì)算的過(guò)程中總結(jié)方法,特別是求原象的方法是解方程或方程組,還可以通過(guò)方程組解的不同情況(有唯一解,無(wú)解或有無(wú)數(shù)解)加深對(duì)映射的認(rèn)識(shí).
。5)在教學(xué)方法上可以采用啟發(fā),討論的形式,讓學(xué)生在實(shí)例中去觀察,比較,啟發(fā)學(xué)生尋找共性,共同討論映射的特點(diǎn),共同舉例,計(jì)算,最后進(jìn)行小結(jié),教師要起到點(diǎn)撥和深化的作用.
教學(xué)設(shè)計(jì)方案
2.1映射
教學(xué)目標(biāo)(1)了解映射的概念,象與原象及一一映射的概念.
(2)在概念形成過(guò)程中,培養(yǎng)學(xué)生的觀察,分析對(duì)比,歸納的能力.
(3)通過(guò)映射概念的學(xué)習(xí),逐步提高學(xué)生的探究能力.
教學(xué)重點(diǎn)難點(diǎn)::映射概念的形成與認(rèn)識(shí).
教學(xué)用具:實(shí)物投影儀
教學(xué)方法:?jiǎn)l(fā)討論式
教學(xué)過(guò)程:
一、引入
在初中,我們已經(jīng)初步探討了函數(shù)的定義并研究了幾類(lèi)簡(jiǎn)單的常見(jiàn)函數(shù).在高中,將利用前面集合有關(guān)知識(shí),利用映射的觀點(diǎn)給出函數(shù)的定義.那么映射是什么呢?這就是我們今天要詳細(xì)的概念.
二、新課
在前一章集合的初步知識(shí)中,我們學(xué)習(xí)了元素與集合及集合與集合之間的關(guān)系,而映射是重點(diǎn)研究?jī)蓚(gè)集合的元素與元素之間的對(duì)應(yīng)關(guān)系.這要先從我們熟悉的對(duì)應(yīng)說(shuō)起(用投影儀打出一些對(duì)應(yīng)關(guān)系,共6個(gè))
我們今天要研究的是一類(lèi)特殊的對(duì)應(yīng),特殊在什么地方呢?
提問(wèn)1:在這些對(duì)應(yīng)中有哪些是讓A中元素就對(duì)應(yīng)B中唯一一個(gè)元素?
讓學(xué)生仔細(xì)觀察后由學(xué)生回答,對(duì)有爭(zhēng)議的,或漏選,多選的可詳細(xì)說(shuō)明理由進(jìn)行討論.最后得出(1),(2),(5),(6)是符合條件的(用投影儀將這幾個(gè)集中在一起)
提問(wèn)2:能用自己的語(yǔ)言描述一下這幾個(gè)對(duì)應(yīng)的共性嗎?
經(jīng)過(guò)師生共同推敲,將映射的定義引出.(主體內(nèi)容由學(xué)生完成,教師做必要的補(bǔ)充)
【高中數(shù)學(xué)教案】相關(guān)文章:
高中數(shù)學(xué)教案05-05
高中數(shù)學(xué)教案11-01
【薦】高中數(shù)學(xué)教案07-05
【熱】高中數(shù)學(xué)教案10-27
【推薦】高中數(shù)學(xué)教案05-29
高中數(shù)學(xué)教案【熱門(mén)】12-31
【精】高中數(shù)學(xué)教案12-29
【熱門(mén)】高中數(shù)學(xué)教案12-29
高中數(shù)學(xué)教案【推薦】12-29